
OptionalValidationFramework

Optional Validation Framework

Authors: Mike Kienenberger, Alexander Jesse

An optional validation framework is available as module in svn for the jsf-comp [http://jsf-comp.svn.sourceforge.net/viewvc/jsf-comp[OptionalValidator]
/trunk/OptionalValidator/] project.

Note: I recommend evaluating the use of the sandbox subForm or ADF subform partial form validation components
as an alternative to this framework -- Mike kienenberger

This optional validator framework allows you to change the behavior of validators in a form. JSF allows you limited two-stage control of validation using the
immediate attribute. However, this is only sufficient for trivial use cases. It does not work well if you have multiple actions requiring multiple validation
configurations on the same form. It also does not provide a warning-only mode where validation errors are reported in a non-fatal manner.

OptionalValidator currently supports three modes: hard (default), soft, and none.

"none" means that the validator will not be validated.
"soft" means that the validator will be executed, and the generated, but the lifecycle will continue past the processValidations FacesMessages
phase.
"hard" is the standard JSF behavior, and the validator will perform as normal.

There is also an for performing the same operations on conversion errors (in none or soft mode, after a conversion error, the converter OptionalConverter
will always return the original submitted value for getAsString and getAsObject).

Because the required validation of a component is handled separately from normal validation, you must not use the required attribute. Instead, there is a Re
 that needs to be used, and a component that is added to bottom of your UIForm in quiredValidator OptionalValidatorWrappingRequiredValidatorChecker

order to trigger the (which may also be wrapped in).RequiredValidators OptionalValidators

There is also a component that is added to the top of your UIForm to preserve submitted values for components which SubmittedValueCollectorWalker
failed validation and to mark components invalid at the start of the model-update phase.

The behavior of the optional validators is determined by the setting of the NET_SF_JSFC_OPT_VDTR_MODE request parameter. Different UICommands
can submit different request parameter options.

It is the responsibility of the end-user developer to know whether any particular component contains valid input for a given action, but it should now be
possible to check the isValid method for a component.

For assistance, send email to mkienenb@gmail.com

Example

#
#
#
#
#
#
#
#
#

<html [...] xmlns:jsfcomp="http://sf.net.jsfcomp.validator">
[...]
 <h:form id="form">
 <jsfcomp:submittedValueCollectorWalker/>
 [...]
 <t:inputCalendar value="#{dateValue}">
 <jsfcomp:optionalConverter delegateConverterId="net.sf.jsfcomp.validator.CalendarDateTimeConverter"
/>
 <jsfcomp:optionalValidator id="openDateOV">
 <f:validator validatorId="net.sf.jsfcomp.validator.RequiredValidator"/>
 </jsfcomp:optionalValidator>
 </t:inputCalendar>
 [...]
 <h:inputText value="#{value}">
 <jsfcomp:optionalValidator delegateValidatorId="net.sf.jsfcomp.validator.RequiredValidator"/>
 <jsfcomp:optionalValidator id="openDateOV">
 <myValidatorId/>
 </jsfcomp:optionalValidator>
 </h:inputText>
 [...]
 <h:commandLink value="Optional action" action="#{optionalAction}">
 <f:param name="NET_SF_JSFC_OPT_VDTR_MODE" value="none"/>
 </h:commandLink>
 <h:commandLink value="Refresh action" action="#{refreshAction}">
 <f:param name="NET_SF_JSFC_OPT_VDTR_MODE" value="soft"/>
 </h:commandLink>
 <h:commandLink value="Update action" action="#{refreshAction}">
 <f:param name="NET_SF_JSFC_OPT_VDTR_MODE" value="hard"/>
 </h:commandLink>
 [...]
 <jsfcomp:optionalValidatorWrappingRequiredValidatorChecker/>
 </h:form>
[...]
</html>

In progress

Allow a set of converters to be wrapped by .OptionalConverter
Allow separate mode settings for different groups of validators.
Change how reports errors (use message bundles?). OptionalConverter

Implementation notes

The component must be placed after all other validating components in the OptionalValidatorWrappingRequiredValidatorChecker MyFaces
implementation in order to mark those components invalidated. Safest bet is to put it right before the closing </h:form> tag. This is probably also
true for other JSF implementations.
The component must be placed before all other validating components in the implementation in order to SubmittedValueCollectorWalker MyFaces
preserve submitted values and update invalidated component status before the update-model phase. Safest bet is to put it right after the <h:form>
tag. This is probably also true for other JSF implementations.

Using only the required validator parts of this framework

If all you want is to use a required validator instead of the required attribute on a component, do something like this. The required validator parts of this
framework should work with vanilla JSF 1.1, and have been relatively-well tested.

#
#
#
https://cwiki.apache.org/confluence/display/MYFACES2/MyFaces
#
https://cwiki.apache.org/confluence/display/MYFACES2/MyFaces

<h:form>
 <jsfcomp:submittedValueCollectorWalker/>

 <uiinput>
 <jsfcomp:requiredValidator/>
 <uiinput/>

 <uiinput>
 <jsfcomp:requiredValidator/>
 <uiinput/>

 <jsfcomp:requiredValidatorChecker/>
</h:form>

	OptionalValidationFramework

