
API0506

Overview

NOTE: This documents the low-level wire protocol used to communicate with Cassandra. This is not intended to be used directly in applications; rather it is
highly recommended that application developers use one of the higher-level clients that are linked to from . That said, this page may still be ClientOptions
useful for application developers wanting to better understand the data model or the underlying operations that are available.

The Cassandra Thrift API changed substantially after , with minor, backwards-compatible changes for , 0.5 and ; this document explains the 0.5 0.3 0.4 0.6
version with annotations for the changes in 0.6 and 0.7.

Cassandra's client API is built entirely on top of Thrift. It should be noted that these documents mention default values, but these are not generated in all of
the languages that Thrift supports. Full examples of using Cassandra from Thrift, including setup boilerplate, are found on .ThriftExamples

WARNING: Some SQL/RDBMS terms are used in this documentation for analogy purposes. They should be thought of as just that; analogies. There are
few similarities between how data is managed in a traditional RDBMS and Cassandra. Please see for more information.DataModel

Terminology / Abbreviations

Keyspace

${renderedContent}

CF

${renderedContent}

SCF

${renderedContent}

Key

${renderedContent}

Column

${renderedContent}

Exceptions

NotFoundException

${renderedContent}

InvalidRequestException

${renderedContent}

UnavailableException

${renderedContent}

TimedOutException

${renderedContent}

TApplicationException

${renderedContent}

AuthenticationException

${renderedContent}

AuthorizationException

${renderedContent}

Structures

ConsistencyLevel

https://cwiki.apache.org/confluence/display/CASSANDRA2/ClientOptions
https://cwiki.apache.org/confluence/display/CASSANDRA2/API03
https://cwiki.apache.org/confluence/display/CASSANDRA2/API04
https://cwiki.apache.org/confluence/display/CASSANDRA2/API06
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#

The is an that controls both read and write behavior based on in your . The ConsistencyLevel enum <ReplicationFactor> storage-conf.xml
different consistency levels have different meanings, depending on if you're doing a write or read operation. Note that if + > , W R ReplicationFactor
where W is the number of nodes to block for on write, and R the number to block for on reads, you will have the most consistent behavior (* see below). Of
these, the most interesting is to do reads and writes, which gives you consistency while still allowing availability in the face of node failures up to QUORUM
half of . Of course if latency is more important than consistency then you can use lower values for either or both.ReplicationFactor

Because the repair replication process only requires a write to reach a single node to propagate, a write which 'fails' to meet consistency
requirements will still appear eventually so long at it was written to at least one node. With W and R both using QUORUM, the best consistency
we can achieve is the guarantee that we will receive the same value regardless of which nodes we read from. However, we can still peform a
W=QUORUM that "fails" but reaches one server, perform a R=QUORUM that reads the old value, and then sometime later perform a
R=QUORUM that reads the new value.

Terminology: "N" is the ; "replicas" are the nodes that are directly responsible for the data; "nodes" are any/all nodes in the cluster, ReplicationFactor N
including participants.HintedHandoff

Write

Level Behavior

ZERO Ensure nothing. A write happens asynchronously in background. Until is fixed: If too many of these queue up, buffers will explode and CASSANDRA-685
bad things will happen.

ANY (Requires 0.6) Ensure that the write has been written to at least 1 node, including recipients.HintedHandoff

ONE Ensure that the write has been written to at least 1 replica's commit log and memory table before responding to the client.

QUORUM Ensure that the write has been written to replicas before responding to the client.N / 2 + 1

DCQUORUM (No longer in 0.7) Ensure that the write has been written to <ReplicationFactor> / 2 + 1 nodes, within the local datacenter (requires NetworkTopologyStrat
)egy

LOCAL_QUOR
UM

(Requires 0.7) Ensure that the write has been written to <ReplicationFactor> / 2 + 1 nodes, within the local datacenter (requires NetworkTopologyStrategy
)

EACH_QUORUM (Requires 0.7) Ensure that the write has been written to <ReplicationFactor> / 2 + 1 nodes in each datacenter (requires)NetworkTopologyStrategy

ALL Ensure that the write is written to all replicas before responding to the client. Any unresponsive replicas will fail the operation.N

Read

Level Behavior

ZERO Not supported, because it doesn't make sense.

ANY Not supported. You probably want ONE instead.

ONE Will return the record returned by the first replica to respond. A consistency check is always done in a background thread to fix any consistency issues when Con
 is used. This means subsequent calls will have correct data even if the initial read gets an older value. (This is called)sistencyLevel.ONE ReadRepair

QUORUM Will query all replicas and return the record with the most recent timestamp once it has at least a majority of replicas () reported. Again, the N / 2 + 1
remaining replicas will be checked in the background.

DCQUO
RUM

(No longer in 0.7) When using rack aware placement strategy reads are keept within a data center. See

https://issues.apache.org/jira/browse/CASSANDRA-492

LOCAL
_QUOR
UM

(Requires 0.7) Returns the record with the most recent timestamp once a majority of replicas within the local datacenter have replied.

EACH_
QUORUM

(Requires 0.7) Returns the record with the most recent timestamp once a majority of replicas within each datacenter have replied.

ALL Will query all replicas and return the record with the most recent timestamp once all replicas have replied. Any unresponsive replicas will fail the operation.

Note: Thrift prior to version 0.6 defaults to a Write Consistency Level of ZERO. Different language toolkits may have their own Consistency Level defaults
as well. To ensure the desired Consistency Level, you should always explicitly set the Consistency Level.

ColumnOrSuperColumn

Due to the lack of inheritance in Thrift, and structures are aggregated by the structure. This is used Column SuperColumn ColumnOrSuperColumn
wherever either a or would normally be expected.Column SuperColumn

If the underlying column is a , it will be contained within the attribute. If the underlying column is a , it will be contained Column column SuperColumn
within the attribute. The two are mutually exclusive - i.e. only one may be populated.super_column

Attribute Type Default Required Description

column Column n/a N The if this is aggregating a .Column ColumnOrSuperColumn Column

super_column SuperColumn n/a N The if this is aggregating a SuperColumn ColumnOrSuperColumn SuperColumn

#
https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
https://issues.apache.org/jira/browse/CASSANDRA-685
https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
#
#
#
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/ReadRepair
https://issues.apache.org/jira/browse/CASSANDRA-492
#

Column

The is a triplet of a name, value and timestamp. As described above, names are unique within a row. Timestamps are arbitrary - they can Column Column
be any integer you specify, however they must be consistent across your application. It is recommended to use a timestamp value with a fine granularity,
such as milliseconds since the UNIX epoch. See for more information.DataModel

Attribute Type Default Required Description

name binary n/a Y The name of the .Column

value binary n/a Y The value of the .Column

timestamp i64 n/a Y The timestamp of the . Column

SuperColumn

A contains no data itself, but instead stores another level of below the key. See for more details on what SuperColumn Columns DataModel SuperColum
 are and how they should be used.ns

Attribute Type Default Required Description

name binary n/a Y The name of the .SuperColumn

columns list<Column> n/a Y The within the . Columns SuperColumn

ColumnPath

The is the path to a single column in Cassandra. It might make sense to think of and in terms of a directory ColumnPath ColumnPath ColumnParent
structure.

Attribute Type Default Required Description

column_family string n/a Y The name of the CF of the column being looked
up.

super_column binary n/a N The super column name.

column binary n/a N The column name.

ColumnParent

The is the path to the parent of a particular set of . It is used when selecting groups of columns from the same ColumnFamily. In ColumnParent Columns
directory structure terms, imagine as .ColumnParent ColumnPath + '/../'

Attribute Type Default Required Description

column_family string n/a Y The name of the CF of the column being looked
up.

super_column binary n/a N The super column name.

SlicePredicate

A is similar to a , which is described as "a property that the elements of a set have in common."SlicePredicate mathematic predicate

SlicePredicate's in Cassandra are described with either a list of or a .column_names SliceRange

Attribute Type De
fau
lt

Req
uired

Description

column
_names

list<b
inary>

n
/a

N A list of column names to retrieve. This can be used similar to Memcached's "multi-get" feature to fetch N known column names. For instance, if you know
you wish to fetch columns 'Joe', 'Jack', and 'Jim' you can pass those column names as a list to fetch all three at once.

slice_
range

SliceR
ange

n
/a

N A describing how to range, order, and/or limit the slice.SliceRange

If is specified, is ignored.column_names slice_range

SliceRange

A is a structure that stores basic range, ordering and limit information for a query that will return multiple columns. It could be thought of as SliceRange
Cassandra's version of and .LIMIT ORDER BY

Attr
ibute

Ty
pe

D
ef
au
lt

Re
qui
red

Description

https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#
#
#
http://en.wikipedia.org/wiki/Predicate_(mathematical_logic)
#

sta
rt

bi
na
ry

n
/a

Y The column name to start the slice with. This attribute is not required, though there is no default value, and can be safely set to , i.e., an empty byte array, to start with _
the first column name. Otherwise, it must be a valid value under the rules of the Comparator defined for the given .ColumnFamily

fin
ish

bi
na
ry

n
/a

Y The column name to stop the slice at. This attribute is not required, though there is no default value, and can be safely set to an empty byte array to not stop until count
results are seen. Otherwise, it must also be a valid value to the Comparator.ColumnFamily

rev
ers
ed

bo
ol

f
a
l
se

Y Whether the results should be ordered in reversed order. Similar to in SQL.ORDER BY blah DESC

cou
nt

in
te
ger

1
00

Y How many columns to return. Similar to in SQL. May be arbitrarily large, but Thrift will materialize the whole result into memory before returning it to the LIMIT 100
client, so be aware that you may be better served by iterating through slices by passing the last value of one call in as the of the next instead of increasing start count
arbitrarily large.

KeyRange

Requires Cassandra 0.6

A is used by to define the range of keys to get the slices for.KeyRange get_range_slices

The semantics of start keys and tokens are slightly different. Keys are start-inclusive; tokens are start-exclusive. Token ranges may also wrap – that is, the
end token may be less than the start one. Thus, a range from keyX to keyX is a one-element range, but a range from tokenY to tokenY is the full ring.

Attribute Type Default Required Description

start_key string n/a N The first key in the inclusive .KeyRange

end_key string n/a N The last key in the inclusive .KeyRange

start_token string n/a N The first token in the exclusive .KeyRange

end_token string n/a N The last token in the inclusive .KeyRange

count i32 100 Y The total number of keys to permit in the . KeyRange

KeySlice

Requires Cassandra 0.6

A encapsulates a mapping of a key to the slice of columns for it as returned by the get_range_slices operation. Normally, when slicing a single KeySlice
key, a of the slice would be returned. When slicing multiple or a range of keys, a is instead returned list<ColumnOrSuperColumn> list<KeySlice>
so that each slice can be mapped to their key.

Attribute Type Default Required Description

key string n/a Y The key for the slice.

columns list<ColumnOrSuperColumn> n/a Y The columns in the
slice.

TokenRange

Requires Cassandra 0.6

A structure representing structural information about the cluster provided by the utility methods detailed below.describe

Attribute Type Default Required Description

start_token string n/a Y The first token in the .TokenRange

end_token string n/a Y The last token in the .TokenRange

endpoints list<string> n/a Y A list of the endpoints (nodes) that replicate data in the . TokenRange

Mutation

Requires Cassandra 0.6

A encapsulates either a column to insert, update, or a deletion to execute for a key. Like , the two properties are Mutation ColumnOrSuperColumn
mutually exclusive - you may only set one on a Mutation.

Attribute Type Default Required Description

column_or_supercolumn ColumnOrSuperColumn n/a N The column to insert or update based on the given
key.

deletion Deletion n/a N The deletion to execute based on the given key.

Deletion

Requires Cassandra 0.6

#
#
#

A encapsulates an operation that will delete all columns matching the specified and . If is specified, Deletion timestamp predicate super_column
the will operate on columns within the - otherwise it will operate on columns in the top-level of the key.Deletion SuperColumn

Attribute Type Default Required Description

timestamp i64 n/a Y The timestamp representing the point in time at which the delete occurs

super_column binary n/a N The super column to delete the column(s) from.

predicate SlicePredicate n/a N A predicate to match the column(s) to be deleted from the key/super
column.

AuthenticationRequest

Requires Cassandra 0.6

A structure that encapsulates a request for the connection to be authenticated. The authentication credentials are arbitrary - this structure simply provides
a mapping of credential name to credential value.

Attribute Type Default Required Description

credentials map<string, string> n/a Y A map of named
credentials.

CFDef, KSDef

Requires Cassandra 0.7

These structures contain fields necessary to describe keyspace and column family definitions.

CFDef

Attribute Type Default Required Description

table string None Yes Keyspace this CFDef belongs to

name string None Yes Name of column family. Must be unique to the keyspace

column_type string "Standard" No One of "Standard" or "Super"

comparator_type string "BytesType
"

No Name of comparator used for column sorting

subcomparator_type string None No Name of comparator used for subcolumns (when column_type="Super"
only)

comment string None No Human-readable description of column family

row_cache_size double 0 No number of rows to cache

preload_row_cache boolean 0 (False) No Set to true to automatically load the row cache

key_cache_size double 200000 No Number of keys to cache

KSDef

Attribute Type Default Required Description

name string None Yes Name of keyspace

strategy_class string None Yes Fully qualified class name of replication strategy

replication_factor integer None Yes Number of data replicas

cf_defs list<CfDef> None Yes list of column family definitions. Can be empty, but not
null

_

Requires Cassandra 0.7 beta 2_

IndexExpression

Attribute Type Default Required Description

column_name binary None Yes The name of the column to perform the operand
on

op IndexOperator None Yes The to applyIndexOperator

value binary None Yes The value to use in the comparison

IndexClause

Attribute Type Default Required Description

expressions list<IndexExpression> None Yes The list of to AND together. Semantics from the client work similar to boolean logical operand && or SQL IndexExpressions
'AND'

start_key binary None Yes Start key range to begin searching on

#
#
#
#
#

count i32 100 No The maximum rows to return

Method calls

login_

Requires Cassandra 0.6_

void login(string keyspace, auth_request)AuthenticationRequest

Authenticates with the cluster for operations on the specified keyspace using the specified credentials. Throws AuthenticationRequest Authenticat
 if the credentials are invalid or if the credentials are valid, but not for the specified keyspace.ionException AuthorizationException

get

ColumnOrSuperColumn get(string keyspace, string key, column_path, ColumnPath ConsistencyLevel
consistency_level)

Get the or at the given . If no value is present, is thrown. (This is the only method that can Column SuperColumn column_path NotFoundException
throw an exception under non-failure conditions.)

get_slice

list<ColumnOrSuperColumn> get_slice(string keyspace, string key, column_parent, ColumnParent SlicePredicate
predicate, consistency_level)ConsistencyLevel

Get the group of columns contained by (either a name or a name pair) specified by the column_parent ColumnFamily ColumnFamily/SuperColumn
given struct.SlicePredicate

multiget_

Deprecated in 0.6 - use instead_multiget_slice

map<string,ColumnOrSuperColumn> multiget(string keyspace, list<string> keys, column_path, ColumnPath Consist
 consistency_level)encyLevel

Perform a for in parallel on the given . The return value maps keys to the found. If no get column_path list<string> keys ColumnOrSuperColumn
value corresponding to a key is present, the key will still be in the map, but both the and references of the column super_column ColumnOrSuperColu

 object it maps to will be null.mn

multiget_slice

map<string,list<ColumnOrSuperColumn>> multiget_slice(string keyspace, list<string> keys, ColumnParent
column_parent, predicate, consistency_level)SlicePredicate ConsistencyLevel

Retrieves slices for and on each of the given keys in parallel. Keys are a `list<string> of the keys to get slices for.column_parent predicate

This is similar to (Cassandra 0.6) or (Cassandra 0.5) except operating on a set of non-contiguous keys instead get_range_slices get_range_slice
of a range of keys.

get_count

i32 get_count(string keyspace, string key, column_parent, consistency_level)ColumnParent ConsistencyLevel

Counts the columns present in .column_parent

The method is not O(1). It takes all the columns from disk to calculate the answer. The only benefit of the method is that you do not need to pull all the
columns over Thrift interface to count them.

get_indexed_slices_

Requires Cassandra 0.7 beta 2_

{{ list<KeySlice> get_indexed_slices(ColumnParent column_parent, index_clause, column_predicate, IndexClause SlicePredicate ConsistencyLev
 consistency_level)}} el

Returns a list of key slices that meed the critera. Note that index clause must contain at least a single EQ operation. The columns specified in IndexClause
the will also need to be specified as indexed when the CF is created.IndexExpressions

get_range_slice_

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Deprecated in 0.6 - use instead_get_range_slices

list<KeySlice> get_range_slice(string keyspace, column_parent, predicate, ColumnParent SlicePredicate
string start_key, string finish_key, i32 row_count=100, consistency_level)ConsistencyLevel

Replaces . Returns a list of slices, sorted by row key, starting with start, ending with finish (both inclusive) and at most count long. The get_key_range
empty string ("") can be used as a sentinel value to get the first/last existing key (or first/last column in the column predicate parameter). Unlike
get_key_range, this applies the given predicate to all keys in the range, not just those with undeleted matching data. This method is only allowed when
using an order-preserving partitioner in 0.5.

get_range_slices_

Requires Cassandra 0.6_
_
In Cassandra 0.7, first parameter "keyspace" is omitted, since the connection should already be authenticated to a keyspace._

list<KeySlice> get_range_slices(string keyspace, column_parent, predicate, ColumnParent SlicePredicate KeyRa
 range, consistency_level)nge ConsistencyLevel

Replaces . Returns a list of slices for the keys within the specified . Unlike get_key_range, this applies the given predicate get_range_slice KeyRange
to all keys in the range, not just those with undeleted matching data.

get_key_range_

Deprecated in 0.5 - use instead_get_range_slice
_
Removed in 0.6 - use instead_get_range_slices

list<string> get_key_range(string keyspace, column_family, string start, string finish, i32 ColumnFamily
count=100, consistency_level)ConsistencyLevel

Returns a list of keys starting with , ending with (both inclusive), and at most long. The empty string ("") can be used as a sentinel start finish count
value to get the first/last existing key. (The semantics are similar to the corresponding components of .)SliceRange

insert

void insert(string keyspace, string key, column_path, binary value, i64 timestamp, ColumnPath ConsistencyLev
 consistency_level)el

Insert or update a consisting of (, ,) at the given and optional Column column_path.column value timestamp column_path.column_family colum
. Note that is here required, since a SuperColumn cannot directly contain binary values – it can only n_path.super_column column_path.column

contain sub-Columns.

batch_insert_

Deprecated in 0.6 - use instead_batch_mutate

void batch_insert(string keyspace, string key, map<string,list<ColumnOrSuperColumn>> batch_mutation, Consist
 consistency_level)encyLevel

Insert or update Columns or across different Column Families for the same row key. is a SuperColumns batch_mutation map<string,
 – a map which pairs column family names with the relevant objects to insert or update with.list<ColumnOrSuperColumn>> ColumnOrSuperColumn

batch_mutate_

Requires Cassandra 0.6_

void batch_mutate(string keyspace, map<string,map<string,list<Mutation>>> mutation_map, ConsistencyLevel
consistency_level)

Executes the specified mutations on the keyspace. is a ; the outer map maps the mutation_map map<string, map<string, list<Mutation>>>
key to the inner map, which maps the column family to the ; can be read as: Mutation map<key : string, map<column_family : string,

. To be more specific, the outer map key is a row key, the inner map key is the column family name.list<Mutation>>>

A specifies columns to insert, update or delete. See and above for more details.Mutation Mutation Deletion

remove

void remove(string keyspace, string key, column_path, i64 timestamp, ColumnPath ConsistencyLevel
consistency_level)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Remove data from the row specified by at the granularity specified by , and the given . Note that all the values in key column_path timestamp column_p
 besides are truly optional: you can remove the entire row by just specifying the ColumnFamily, or you can remove a ath column_path.column_family

SuperColumn or a single Column by specifying those levels too. Note that the is needed, so that if the commands are replayed in a different timestamp
order on different nodes, the same result is produced.

describe_cluster_name_

Requires Cassandra 0.6_

string describe_cluster_name()

Gets the name of the cluster.

describe_version_

Requires Cassandra 0.6_

string describe_version()

Gets the Thrift API version.

describe_ring_

Requires Cassandra 0.6_

list<TokenRange> describe_ring(string keyspace)

Gets the token ring; a map of ranges to host addresses. Represented as a set of instead of a map from range to list of endpoints, because TokenRange
you can't use Thrift structs as map keys: for the same reason, we can't return a set here, even though https://issues.apache.org/jira/browse/THRIFT-162
order is neither important nor predictable.

describe_keyspace_

Requires Cassandra 0.7_

KsDef describe_keyspace(string keyspace)

Gets information about the specified keyspace.

describe_keyspaces_

Requires Cassandra 0.7_

list<KsDef> describe_keyspaces()

Gets a list of all the keyspaces configured for the cluster. (Equivalent to calling describe_keyspace(k) for k in keyspaces.)

truncate_

Requires Cassandra 0.7_

truncate(string column_family)

Removes all the rows from the given column family.

system_add_column_family_

Requires Cassandra 0.7_

string system_add_column_family(CFDef cf_def)

Adds a column family. This method will throw an exception if a column family with the same name is already associated with the keyspace. Returns the
new schema version ID.

system_drop_column_family_

Requires Cassandra 0.7_

string system_drop_column_family(ColumnFamily column_family)

Drops a column family. Creates a snapshot and then submits a 'graveyard' compaction during which the abandoned files will be deleted. Returns the new
schema version ID.

https://issues.apache.org/jira/browse/THRIFT-162

system_rename_column_family_

Requires Cassandra 0.7_

string system_rename_column_family(string old_name, string new_name)

Renames a column family if the new name doesn't collide with an existing column family associated with the same keyspace. This operation blocks while
the operating system renames files on disk. Returns the new schema version ID.

system_add_keyspace_

Requires Cassandra 0.7_

string system_add_keyspace(KSDef ks_def)

Creates a new keyspace and any column families defined with it. Callers to first create an empty keyspace and then create column are not required
families for it. Returns the new schema version ID.

system_drop_keyspace_

Requires Cassandra 0.7_

string system_drop_keyspace(string keyspace)

Drops a keyspace. Creates a snapshot and then submits a 'graveyard' compaction during which the abandoned files will be deleted. Returns the new
schema version ID.

system_rename_keyspace_

Requires Cassandra 0.7''

string system_rename_keyspace(string old_name, string new_name)

Renames a keyspace if the new name doesn't collide with an existing keyspace. This operation blocks while the operating system renames files on disk.
Returns the new schema version ID.

Examples

There are a few examples on this page over here.

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

http://wiki.apache.org/cassandra/ClientExamples
https://c.statcounter.com/9397521/0/fe557aad/1/

	API0506

