
1.  

ArchitectureAntiEntropy

Anti-entropy Overview

AntiEntropyService generates MerkleTrees for column families during major compactions. These trees are then exchanged with remote nodes via a 
TreeRequest/TreeResponse conversation, and when ranges in the trees disagree, the 'org.apache.cassandra.streaming' package is used to repair those 
ranges.

Tree comparison and repair triggering occur in the single threaded AE_SERVICE_STAGE.

The steps taken to enact a repair are as follows:

A major compaction is triggered either via nodeprobe, or automatically:
Nodeprobe sends TreeRequest messages to all neighbors of the target node: when a node receives a TreeRequest, it will perform a 
readonly compaction to immediately validate the column family.
Automatic compactions will also validate a column family and broadcast TreeResponses, but since TreeRequest messages are not sent 
to neighboring nodes, repairs will only occur if two nodes happen to perform automatic compactions within TREE_STORE_TIMEOUT of 
one another.

2. The compaction process validates the column family by:

Calling getValidator() (which can return a NoopValidator if validation should not be performed),
Calling IValidator.prepare(), which samples the column family to determine key distribution,
Calling IValidator.add() in order for every row in the column family,
Calling IValidator.complete() to indicate that all rows have been added.

If getValidator decided that the column family should be validated, calling complete() indicates that a valid MerkleTree has been created 
for the column family.
The valid tree is broadcast to neighboring nodes via TreeResponse, and stored locally.

3. When a node receives a TreeResponse, it passes the tree to rendezvous(), which checks for trees to rendezvous with / compare to:

If the tree is local, it is cached, and compared to any trees that were received from neighbors.
If the tree is remote, it is immediately compared to a local tree if one is cached. Otherwise, the remote tree is cached in case a local tree is 
generated within TREE_STORE_TIMEOUT.
A Differencer object is enqueued for each comparison.

4. Differencers are executed in AE_SERVICE_STAGE, to compare the two trees.

If the trees disagree, the differencer will perform repair for the mismatched ranges via the io.Streaming api. 

TODO

Repairs currently require 2 major compactions: one to validate a column family, and then another to send the disagreeing ranges.

One possible fix to this problem would be to use something like a  to store a summary of every SSTable on disk, where each sub-bloom Linear Bloom Filter
is partitioned using 'midpoint()' like the current MerkleTree. Then, to validate a column family, you could OR together the bloom filters for each SSTable, 
and send it to neighbors without performing a compaction.

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

http://comonad.com/reader/2008/linear-bloom-filters/
https://c.statcounter.com/9397521/0/fe557aad/1/

	ArchitectureAntiEntropy

