
ArchitectureInternals
General

Configuration file is parsed by DatabaseDescriptor (which also has all the default values, if any)
Thrift generates an API interface in Cassandra.java; the implementation is CassandraServer, and CassandraDaemon ties it together (mostly:
handling commitlog replay, and setting up the Thrift plumbing)
CassandraServer turns thrift requests into the internal equivalents, then StorageProxy does the actual work, then CassandraServer turns the
results back into thrift again

CQL requests are compiled and executed through . Note that as of 1.2 we still support both the old cql2 dialect and the QueryProcessor
cql3, in different packages.

StorageService is kind of the internal counterpart to CassandraDaemon. It handles turning raw gossip into the right internal state and dealing with
ring changes, i.e., transferring data to new replicas. TokenMetadata tracks which nodes own what arcs of the ring. Starting in 1.2, each node may
have multiple Tokens.
AbstractReplicationStrategy controls what nodes get secondary, tertiary, etc. replicas of each key range. Primary replica is always determined by
the token ring (in TokenMetadata) but you can do a lot of variation with the others. SimpleStrategy just puts replicas on the next N-1 nodes in the
ring. NetworkTopologyStrategy allows the user to define how many replicas to place in each datacenter, and then takes rack locality into account
for each DC – we want to avoid multiple replicas on the same rack, if possible.
MessagingService handles connection pooling and running internal commands on the appropriate stage (basically, a threaded executorservice).
Stages are set up in StageManager; currently there are read, write, and stream stages. (Streaming is for when one node copies large sections of
its SSTables to another, for bootstrap or relocation on the ring.) The internal commands are defined in StorageService; look for registerVerbHa

.ndlers
Configuration for the node (administrative stuff, such as which directories to store data in, as well as global configuration, such as which global
partitioner to use) is held by DatabaseDescriptor. Per-KS, per-CF, and per-Column metadata are all stored as parts of the Schema: KSMetadata,
CFMetadata, ColumnDefinition. See also . ConfigurationNotes

Some historical baggage
Some classes have misleading names, notably ColumnFamily (which represents a single row, not a table of data) and, prior to 2.0, Table (which
was renamed to Keyspace).

Write path
StorageProxy gets the nodes responsible for replicas of the keys from the ReplicationStrategy, then sends RowMutation messages to them.

If nodes are changing position on the ring, "pending ranges" are associated with their destinations in TokenMetadata and these are also
written to.
ConsistencyLevel determines how many replies to wait for. See WriteResponseHandler.determineBlockFor. Interaction with pending
ranges is a bit tricky; see https://issues.apache.org/jira/browse/CASSANDRA-833
If the says that we don't have enough nodes alive to satisfy the , we fail the request with FailureDetector ConsistencyLevel
UnavailableException
When performing atomic batches, the mutations are written to the batchlog on two live nodes in the local datacenter. If the local
datacenter contains multiple racks, the nodes will be chosen from two separate racks that are different from the coordinator's rack, when
possible. If only one other node is alive, it alone will be used, but if no other nodes are alive, an will be returned UnavailableException
unless the consistency level is ANY. If the cluster has only one node, it will write the batchlog entry itself. The batchlog is contained in
the system.batchlog table.
If the FD gives us the okay but writes time out anyway because of a failure after the request is sent or because of an overload scenario,
StorageProxy will write a "hint" locally to replay the write when the replica(s) timing out recover. This is called . Note that HintedHandoff
HH does not prevent inconsistency entirely; either unclean shutdown or hardware failure can prevent the coordinating node from writing
or replaying the hint. is responsible for restoring consistency more completely.ArchitectureAntiEntropy
Cross-datacenter writes are not sent directly to each replica; instead, they are sent to a single replica with a parameter in MessageOut
telling that replica to forward to the other replicas in that datacenter; those replicas will respond diectly to the original coordinator.

On the destination node, RowMutationVerbHandler calls .apply() (which calls Keyspace.apply()) to make the mutation. This has RowMutation
several steps. First, an entry is appended to the (potentially blocking if the is in batch sync mode or if the queue is full for CommitLog CommitLog
periodic sync mode.) Next, the Memtable, secondary indexes (if applicable), and row cache are updated (sequentially) for each in ColumnFamily
the mutation.
When a Memtable is full, it is asynchronously sorted and written out as an SSTable by ColumnFamilyStore.switchMemtable

"Fullness" is monitored by MeteredFlusher; the goal is to flush quickly enough that we don't OOM as new writes arrive while we still have
to hang on to the memory of the old memtable during flush
When Memtables are flushed, a check is scheduled to see if a compaction should be run to merge SSTables. CompactionManager
manages the queued tasks and some aspects of compaction.

Making this concurrency-safe without blocking writes or reads while we remove the old SSTables from the list and add the new
one is tricky. We perform manual reference counting on sstables during reads so that we know when they are safe to remove, e.
g., ColumnFamilyStore.getSSTablesForKey.
Multiple CompactionStrategies exist. The original, SizeTieredCompactionStrategy, combines sstables that are similar in size.
This can result is a lot of wasted space in overwrite-intensive workloads. LeveledCompactionStrategy provides stricter
guarantees at the price of more compaction i/o; see http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
and http://www.datastax.com/dev/blog/when-to-use-leveled-compaction

See and for more details ArchitectureSSTable ArchitectureCommitLog

Read path

#
https://cwiki.apache.org/confluence/display/CASSANDRA2/ConfigurationNotes
#
https://issues.apache.org/jira/browse/CASSANDRA-833
#
#
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
https://cwiki.apache.org/confluence/display/CASSANDRA2/ArchitectureAntiEntropy
#
#
#
#
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
https://cwiki.apache.org/confluence/display/CASSANDRA2/ArchitectureSSTable
https://cwiki.apache.org/confluence/display/CASSANDRA2/ArchitectureCommitLog

StorageProxy.fetchRows() creates a for each of the read commands.ReadExecutor
Depending on the query type, the read commands will be SliceFromReadCommands, SliceByNamesReadCommands, or a
RangeSliceCommand. Secondary index queries are covered by RangeSliceCommand.
The determines the replicas (endpoints) to read from by processing the row (partition) key with the ReplicationStrategy for ReadExecutor
the keyspace
Endpoints are filtered to contain only those that are currently up/alive

If there are not enough live endpoints to meet the consistency level, an reponse is returnedUnavailableException
Endpoints are sorted by "proximity".

With a , proximity directly corresponds to proximity on the token ring.SimpleSnitch
With implementations based on (such as), endpoints that are in the same AbstractNetworkTopologySnitch PropertyFileSnitch
rack are always considered "closer" than those that are not. Failing that, endpoints in the same data center are always
considered "closer" than those that are not.
The , typically enabled in the configuration, wraps whatever underlying snitch (such as and DynamicSnitch SimpleSnitch Propert

) so as to dynamically adjust the perceived "closeness" of endpoints based on their recent performance. This is an yFileSnitch
effort to try to avoid routing more traffic to endpoints that are slow to respond.

The closest node (as determined by proximity sorting as described above) will be sent a command to perform an actual data read (i.e.,
return data to the co-ordinating node).
As required by consistency level, additional nodes may be sent digest commands, asking them to perform the read locally but send back
the digest only.

For example, at replication factor 3 a read at consistency level QUORUM would require one digest read in additional to the data
read sent to the closest node. (See , instantiated by)ReadCallback StorageProxy
If read repair is (probabilistically) enabled (depending on read_repair_chance and dc_local_read_repair_chance), remaining
nodes responsible for the row will be sent messages to compute the digest of the response.

A specific implementation of is created depending on whether or not should be applied. In the AbstractReadExecutor speculative retry
normal case, a will be created.SpeculatingReadExecutor

On the data node, ReadVerbHandler gets the data from CFS.getColumnFamily, CFS.getRangeSlice, or CFS.search for single-row reads, seq
scans, and index scans, respectively, and sends it back as a ReadResponse

For single-row requests, we use a QueryFilter subclass to pick the data from the Memtable and SSTables that we are looking for.
If the row cache is enabled, it is first checked for the requested row (in ColumnFamilyStore.getThroughCache). The row cache will
contain the full partition (storage row), which can be trimmed to match the query. If there is a cache hit, the coordinator can be
responded to immediately.
The set of SSTables to read data from are narrowed at various stages of the read by the following techniques:

If a row tombstone is read in one SSTable and its timestamp is greater than the max timestamp in a given SSTable, that
SSTable can be ignored
If we're requesting column X and we've read a value for X from an SSTable at time T1, any SSTables whose maximum
timestamp is less than T1 can be ignored
If a slice is requested and the min and max column names for a given SSTable do not fall within the slice, that SSTable can be
ignored
The for each SSTable can be checked to definitively determine that a given row is not present in the SSTable. A BloomFilter
small percentage of checks will result in a false positive (claiming that the row does exist when it actually does not). The
approximate rate of false positives is configurable in order to control the size of bloom filters.

To locate the data row's position in SSTables, the following sequence is performed:
The key cache is checked for that key/sstable combination
If there is a cache miss, the is used. The is a sampling of the primary on-disk index; by default, IndexSummary IndexSummary
every 128th parition (storage row) gets an entry in the summary. A binary search is performed on the index summary in order to
get a position in the on-disk index to begin scanning for the actual index entry.
The primary index is scanned, starting from the above location, until the key is found, giving us the starting position for the data
row in the sstable. This position is added to the key cache. In the case of bloom filter false positives, the key may not be found.

Some or all of the data is then read:
If we are reading a slice of columns, we use the row-level column index to find where to start reading, and deserialize block-at-
a-time (where "block" is the group of columns covered by a single index entry) so we can handle the "reversed" case without
reading vast amounts into memory
If we are reading a group of columns by name, we use the column index to locate each column
If compression is enabled, the block that the requested data lives in must be uncompressed

Data from Memtables and SSTables is then merged (primarily in CollationController)
The column readers provide an Iterator interface, so the filter can easily stop when it's done, without reading more columns
than necessary
Since we need to potentially merge columns from multiple SSTable versions, the reader iterators are combined through a
ReducingIterator, which takes an iterator of uncombined columns as input, and yields combined versions as output

If row caching is enabled, the row cache is updated in ColumnFamilyStore.getThroughCache()
Back on the coordinator node, responses from replicas are handled:

If a replica fails to respond before a configurable timeout, a is raisedReadTimeoutException
If responses (data and digests) do not match, a full data read is performed against the contacted replicas in order to guarantee that the
most recent data is returned
If the read command is a and at least one replica responded with the requested number of cells (or cql3 SliceFromReadCommand
rows), but after merging responses fewer than the requested number of cells/rows remain, the query will be retried with a higher
requested cell/row count.
Once retries are complete and digest mismatches resolved, the coordinator responds with the final result to the client

In addition:

At any point if a message is destined for the local node, the appropriate piece of work (data read or digest read) is directly submitted to the
appropriate local stage (see) rather than going through messaging over the network.StageManager
The fact that a data read is only submitted to the closest replica is intended as an optimization to avoid sending excessive amounts of data over
the network. A digest read will take the full cost of a read internally on the node (CPU and in particular disk), but will avoid taxing the network.

Deletes

#
#
#
#
#
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/StorageProxy
#
http://www.datastax.com/dev/blog/rapid-read-protection-in-cassandra-2-0-2
#
#
#
#
#
#
#

See DistributedDeletes

Gossip
based on "Efficient reconciliation and flow control for anti-entropy protocols:" http://www.cs.cornell.edu/home/rvr/papers/flowgossip.pdf
See for more details ArchitectureGossip

Failure detection
based on "The Phi accrual failure detector:" http://vsedach.googlepages.com/HDY04.pdf

Further reading
The idea of dividing work into "stages" with separate thread pools comes from the famous SEDA paper: http://www.eecs.harvard.edu/~mdw
/papers/seda-sosp01.pdf
Crash-only design is another broadly applied principle. is a good introductionValerie Henson's LWN article
Cassandra's distribution is closely related to the one presented in Amazon's Dynamo paper. Read repair, adjustable consistency levels, hinted
handoff, and other concepts are discussed there. This is required background material: http://www.allthingsdistributed.com/2007/10

. The related article on is also relevant. Jeff Darcy's article on /amazons_dynamo.html article on eventual consistency Availability and Partition
 explains the underlying principle of CAP better than most.Tolerance

Cassandra's on-disk storage model is loosely based on sections 5.3 and 5.4 of .the Bigtable paper
Aaron Morton gave a at the 2013 Cassandra Summit.talk on Cassandra Internals
Facebook's Cassandra team authored a paper on Cassandra for LADIS 09, which has now been annotated and compared to Apache Cassandra

. 2.0

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

https://cwiki.apache.org/confluence/display/CASSANDRA2/DistributedDeletes
http://www.cs.cornell.edu/home/rvr/papers/flowgossip.pdf
https://cwiki.apache.org/confluence/display/CASSANDRA2/ArchitectureGossip
http://vsedach.googlepages.com/HDY04.pdf
http://www.eecs.harvard.edu/~mdw/papers/seda-sosp01.pdf
http://www.eecs.harvard.edu/~mdw/papers/seda-sosp01.pdf
http://lwn.net/Articles/191059/
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://pl.atyp.us/wordpress/?p=2521
http://pl.atyp.us/wordpress/?p=2521
http://labs.google.com/papers/bigtable.html
http://www.youtube.com/watch?v=W6e8_IcgJM4
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
https://c.statcounter.com/9397521/0/fe557aad/1/

	ArchitectureInternals

