
1.
2.
3.

Cassandra2474
CQL Compound Column Proposals
This page is an attempt to summarize , collecting the most recent versions of each proposal, in CASSANDRA-2474: CQL support for compound columns
the hopes that they can be more easily compared.

The names are arbitrary (proposers, feel free to change them), and the ordering is based on when/where each appeared in issue .#2474

CQL Compound Column Proposals
Background

Supercolumns
Composite columns
DynamicCompositeType

Goals
Non-goals and related tickets
Alpha

Discussion Summary
Beta

Discussion Summary
Gamma

Examples
Discussion Summary

Background

Supercolumns

Cassandra has supported limited nesting of data within a row via since its initial release. A supercolumn is a named container of SuperColumns
subcolumns, with no other metadata attached to it: unlike data columns, it cannot have a timestamp or TTL associated with it. (The one exception is that
supercolumns CAN be deleted as a unit, and thus CAN be tombstones.) Thus, a row using supercolumns looks like this:SuperColumns

key supercolumn1 supercolumn2

 subcolumn1 subcolumn2
subcolumn3

subcolumn4 subcolumn5

The most common use case for is to represent "materialized views" or "precomputed resultsets": each object in the resultset maps to a [SuperColumns]
single supercolumn. This usually takes advantage of the sorting-by-column-name to give very performant "slice" lookups for this resultset. To use a more
concrete example, we could represent the Twitter timeline as a single supercolumn row per user, with the tweets made by that user's friends represented
as supercolumns within that row. The supercolumn names will be the posted_at information, so this lets us get "most recent tweets, in [reverse]
chronological order" easily:

tjeffers
on

1763 1790 1818

 body posted_
by

body posted_b
y

body posted_
by

 Democracy will soon degenerate into an anarchy jadams To be prepared for war is one of the most effectual means of
preserving peace

gwashingt
on

Revolution was effected before the war
commenced

jadams

bfrankli
n

1781

 body posted_
by

 Every government degenerates when trusted to the rulers of the
people alone

tjefferson

Composite columns

SuperColumns have a number of limitations, most notably

there can only ever be a single level of nesting
to read any subcolumn from supercolumn X, all of X is read into memory
they add a lot of complexity to the Cassandra implementation and cause a fair number of bugs

To address these problems, Cassandra added the , which encodes a multi-value column name into a single column – essentially the CompositeType
column name becomes a Tuple, for those with a background in Python. I will use Python tuple representation (x, y, z) to denote a composite column with
components x, y, and z.

Composite columns are flexible enough that there are multiple ways to encode the same data. The most natural ways to encode the above timeline data
are, first, an encoding where each object becomes a single column, with an empty value:

tjefferson (1763, 'Democracy will soon degenerate
into an anarchy', 'jadams')

(1790, 'To be prepared for war is one of
the most effectual means of preserving
peace', 'gwashington')

(1818, 'Revolution was
effected before the war
commenced', 'jadams')

https://issues.apache.org/jira/browse/CASSANDRA-2474
https://issues.apache.org/jira/browse/CASSANDRA-2474
#
#
#
#

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-
version="1" ac:macro-id="d84b092e-e39c-4a08-a7e2-90a570812aac"
><ac:plain-text-body><![CDATA[

 [empty] [empty] [e
m
pt
y]

]]></ac:plain-text-
body></ac:
structured-macro>

bfranklin (1781, 'Every government degenerates
when trusted to the rulers of the people
alone', 'tjefferson')

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-
version="1" ac:macro-id="8415d9be-036f-43bc-a020-6627caca7d94"
><ac:plain-text-body><![CDATA[

 [empty]]]></ac:plain-text-
body></ac:
structured-macro>

(One could arbitrarily pick any column whose sort order is not important to be the column "value" instead, but I think it's more straightforward to treat things
uniformly.)

The main drawback to this representation is that like row keys, column names are necessarily immutable in Cassandra. So there is no way to update an
object using this representation other than by deleting the old and adding the new. More subtly, this exposes us to some of the drawbacks of a pure key
/value approach that normal Cassandra columns avoid: if one client updates field X in a result, while another client updates field Y, there will be no race
when X and Y are distinct columns. But if these fields are stored as part of the same composite column then there is a race.

Another way to encode this data addresses these drawbacks by splitting updateable fields into separate composite columns:

tjeffer
son

(1763, body) (1763,
posted_by)

(1790, body) (1790,
posted_by)

(1818, body) (1818,
posted_by)

 Democracy will soon degenerate into an anarchy jadams To be prepared for war is one of the most effectual means
of preserving peace

gwashington Revolution was effected before the war
commenced

jadams

bfrank
lin

(1781, body) (1781,
posted_by

 Every government degenerates when trusted to the rulers
of the people alone

tjefferson

For lack of better terms, we have been calling these "dense" and "sparse" composite column encodings.

DynamicCompositeType

DCT has no set type information or field count – each component of the composite column name includes the type name as well (encoded as a utf-8
String). Currently, this allows rows within the same to have different kinds of data in them. In the future, this will also allow different kinds of ColumnFamily
data within the same row ().https://issues.apache.org/jira/browse/CASSANDRA-3625

Goals

Primary: provide a CQL syntax for updating and querying composite column families.

Secondary goal: proposed syntax should be implementable by the Hive driver with the minimum of changes from mainline Hive. In particular, changes to
the Hive parser are too difficult to maintain long-term and are Right Out. We would prefer to avoid changes to the Hive metastore but this is doable if
necessary.

Tertiary goal: it would be nice to support supercolumns as well as composite columns

Non-goals and related tickets

Supporting or other arbitrarily-and-non-uniformly nested "document" data is a non-goal. DynamicCompositeType https://issues.apache.org/jira/browse
 is created to follow up on this related problem./CASSANDRA-3647

Supporting non-utf8 column names is orthogonal to supporting composite columns; will address that in https://issues.apache.org/jira/browse/CASSANDRA-
.3685

Alpha

The short-lived first proposal envisioned adding the "prefix" from which to select a resultset to the table name in the FROM clause. Discussion starts
Discussion starts here

SELECT x, y FROM foo:bar WHERE parent='columnA'

select a, b FROM foo:bar:columnA where subparent='x'

Discussion Summary

Jonathan was thinking in terms of supercolumns for this early proposal. It's not clear how to generalize this to composites where the "subcolumns" are not
explicitly named in the definition.CompositeType

This proposal would require a Hive metastore change, but the nail in the coffin is that this means you cannot use WHERE clauses with the "parent" parts of
the column. So, no range queries (necessary for map/reduce) or even slices within the same row.

#
#
https://issues.apache.org/jira/browse/CASSANDRA-3625
#
https://issues.apache.org/jira/browse/CASSANDRA-3647
https://issues.apache.org/jira/browse/CASSANDRA-3647
https://issues.apache.org/jira/browse/CASSANDRA-3685
https://issues.apache.org/jira/browse/CASSANDRA-3685
https://issues.apache.org/jira/browse/CASSANDRA-2474?focusedCommentId=13046834&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-13046834
#

Beta

This proposal suggests the use of a keyword or hint to indicate that a query is transposed. Discussion starts here

The first part of the discussion is where to put the transposition marker:

select /*+TRANSPOSED*/ key, column, subcolumn, value from foo;

select key, column, subcolumn, value from foo TRANSPOSED;

select transposed(key, column, subcolumn, value) from foo;

Settling on "table:transposed" because that requires no Hive changes:

select key, column, subcolumn, value from foo:transposed;

The second part, starting , digs into how to deal with destructuring the composite column name:here

SELECT name AS (tweet_id, username), value AS body
FROM timeline:transposed
WHERE tweet_id = '95a789a' AND user_id = 'cscotta'

SELECT component1 AS tweet_id, component2 AS username, component3 location, value AS body
FROM timeline:transposed
WHERE user_id = '95a789a'

UPDATE tweets:transposed SET COMPOUND NAME ('2e1c3308', 'cscotta') = 'My motocycle...' WHERE KEY = <key>;

UPDATE tweets:transposed SET value = 'my motorcycle' WHERE KEY= <key> AND column = COMPOUND_NAME('2e1c3308',
'cscotta');

Discussion Summary

There was general agreement that "FROM foo:transposed" is a reasonable syntax, however, neither the "componentX" syntax (where X is in range(1,
number of components in the compositetype) nor the "name AS (x, y)" syntax met with approval: the "name AS" syntax requires patching the Hive parser,
and the "componentX" syntax is ugly and repetitive to use. The UPDATE syntaxes were also unsatisfactory.

Gamma

This proposal switches gears to dealing with transposition using DDL instead of

Discussion starts here

Gamma can represent both dense and sparse composite types; fields included in the PRIMARY KEY definition will be represented as part of the
composite column "prefix" with a dense encoding:

https://issues.apache.org/jira/browse/CASSANDRA-2474?focusedCommentId=13046937&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-13046937
https://issues.apache.org/jira/browse/CASSANDRA-2474?focusedCommentId=13095626&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-13095626
https://issues.apache.org/jira/browse/CASSANDRA-2474?focusedCommentId=13171304&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-13171304

-- the "dense" encoding shown above in the Background section
CREATE TABLE timeline (
 user_id int,
 posted_at uuid,
 body string,
 posted_by string,
 PRIMARY KEY(user_id, posted_at, body, posted_by)
);

-- the "sparse" encoding
CREATE TABLE timeline (
 user_id int,
 posted_at uuid,
 body string,
 posted_by string,
 PRIMARY KEY(user_id, posted_at)
);

Examples

SELECT, , and syntax require no changes. Some examples, using the timeline data from the Background section above:INSERT UPDATE

INSERT INTO timeline (user_id, posted_at, posted_by, body)
VALUES ('tjefferson', '1818', 'jadams', 'Revolution was effected before the war commenced');

INSERT INTO timeline (user_id, posted_at, posted_by, body)
VALUES ('tjefferson', '1763', 'jadams', 'Democracy will soon degenerate into an anarchy');

INSERT INTO timeline (user_id, posted_at, posted_by, body)
VALUES ('tjefferson', '1790', 'gwashington', 'To be prepared for war is one of the most effectual means of
preserving peace');

INSERT INTO timeline (user_id, posted_at, posted_by, body)
VALUES ('bfranklin', '1781', 'tjefferson', 'Every government degenerates when trusted to the rulers of the
people alone');

An example :SELECT

SELECT * FROM timeline WHERE user_id = 'tjefferson' AND posted_at > 1770;

user_id posted_at posted_by body

tjefferson 1790 gwashington To be prepared for war is one of the most effectual means of preserving peace

tjefferson 1818 jadams Revolution was effected before the war commenced

Discussion Summary

Only minimal CQL changes are required. The Hive metastore would need to be updated to understand the TRANSPOSED syntax. Normal SELECTs and
UPDATEs are supported, including "SELECT *," a weakness of the Beta proposals.

The PRIMARY KEY syntax allows for specifying both "sparse" and "dense" data layouts, without the SPARSE keyword that some found unappealing. It
also improves conceptual integrity with existing C* practice, namely, that row keys are not update-able. So, the tradeoff is straightforward: include a column
in the PRIMARY KEY if you want it to be part of the positional tuple (and be more space efficient); leave it out if you want to update it.CompositeType

Originally a TRANSPOSED WITH [options] syntax was proposed but consensus is that this is weaker than just inferring from the composite PRIMARY
KEY definitions.

This also allows supporting , should we choose to do so.SuperColumns

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

#
#
https://c.statcounter.com/9397521/0/fe557aad/1/

	Cassandra2474

