
1.

1.
2.
3.

4.

5.

6.

HowToContribute

Overview

Pick an issue to work on. If you don't have a specific , some possibilities are marked with in JIRA. 2. itch to scratch the low-hanging fruit label
Read the relevant parts of ; other resources include the following videos: Architecture Internals DataStax Deep Dives into Apache Cassandra

, such as , and Cassandra user group videos like . 3. internals Planet Cassandra videos this Summit 2013 talk this one from Austin Cassandra
Check if someone else has already created an ticket for the change you have in mind in the . 4. If not, create a ticket describing the issue tracker
change you're proposing in the issue tracker. 5. When you're ready to start working on the ticket, if it has not yet been assigned, assign the ticket
to yourself in JIRA. This is done using the "Assign" button at the top of the ticket. 6. Clone the latest version of the source code:

git clone cassandrahttp://git-wip-us.apache.org/repos/asf/cassandra.git
You'll want to checkout out the branch corresponding to the lowest version in which you want to introduce the change. For example,
git checkout cassandra-3.0
From there, create a branch for your changes. Many contributors name their branches based on ticket number and Cassandra version.
git checkout -b 12345-3.0
7. Modify the source to include the improvement/bugfix
Verify that you follow Cassandra's .CodeStyle
Verify that your change works by adding a unit test.
Make sure all tests pass using the commands below. If you suspect a test failure is unrelated to your change, it may be useful to check
the test's status by searching the issue tracker or looking at results for the relevant upstream version.CI
For testing multi-node behavior, , a tool to easily create local clusters, is useful.CCM
Consider going through the for your code. This will help you to understand how others will consider your change for Review Checklist
inclusion.
8. When you're happy with the result, create a patch:
git add <any new or modified file>
git commit -m '<message>'
git format-patch
mv <patch-file> <ticket-branchname.txt> (e.g. 12345-trunk.txt, 12345-3.0.txt)
Alternatively, many contributors prefer to make their branch available on GitHub. In this case, fork the Cassandra repository on GitHub
and push your branch:
git push --set-upstream origin 12345-3.0
9. To make life easier for your reviewer/committer, you may want to make sure your patch applies cleanly to later branches and create
additional patches/branches for later Cassandra versions to which your original patch does not apply cleanly. That said, this is not
critical, and you will receive feedback on your patch regardless.
10. Attach the newly generated patch to the ticket/add a link to your branch and click "Submit Patch" at the top of the ticket. This will
move the ticket into "Patch Available" status, indicating that your submission is ready for review.
11. Wait for other developers or committers to review it and hopefully +1 the ticket (see). If your change does not receive How To Review
a +1, do not be discouraged. If possible, the reviewer will give suggestions to improve your patch or explain why it is not suitable.
12. If the reviewer has given feedback to improve the patch, make the necessary changes and move the ticket into "Patch Available"
once again.
13. Once the review process is complete, you will receive a +1. Wait for a committer to commit it.

Testing and Coverage

There are two major sets of tests for Cassandra: unit tests and dtests. The unit tests are part of the Cassandra repository; dtests are functional tests that
are available at .https://github.com/riptano/cassandra-dtest

Running the Unit Tests

Run from the top-level directory of your Cassandra checkout to run all unit tests. To run a specific test class, run ant test ant -Dtest.
. In this case, ClassName should not be fully qualified. For example, it might be . To run a specific test method, name=<ClassName> StorageProxyTest

run . When using the ant testsome -Dtest.name=<ClassName> -Dtest.methods=<comma-separated list of method names> testsome
command, ClassName should be a fully qualified name (like).org.apache.cassandra.service.StorageProxyTest

You can also run tests in parallel: .ant test -Dtest.runners=4

Running the dtests

The dtests use to test a local cluster. If the following instructions don't seem to work, you may find more current instructions in the .CCM dtest repository

Install CCM. You can do this with pip by running .pip install ccm
Install nosetests. With pip, this is .pip install nose
Install Cassandra Python driver. This can be installed using pip install git+git://github.com/datastax/python-

. This installs a dedicated test branch driver for new features. If you're working primarily on older versions, driver@cassandra-test pip
 may be sufficient.install cassandra-test

Clone the dtest repository:
git clone cassandra-dtesthttps://github.com/riptano/cassandra-dtest.git .

Set to the location of your cassandra checkout. For example: . Make $CASSANDRA_DIR export CASSANDRA_DIR=/home/joe/cassandra
sure you've already built Cassandra in this directory. You can build Cassandra by running .ant
Run all tests by running from the dtest checkout. You can run a specific module like so: . You can run a nosetests nosetests cql_tests.py
specific test method like this: .nosetests cql_tests.py:TestCQL.counters_test

If you encounter any failures, you can confirm whether or not they exist in upstream branches by checking to see if the failing tests or
test classes are tagged with the decorator. This decorator is . If a test that is known to known_failure documented inline in the dtests

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s02.html
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+=+12310865+AND+labels+=+lhf+AND+status+!=+resolved
https://cwiki.apache.org/confluence/display/CASSANDRA2/ArchitectureInternals
http://www.datastax.com/dev/blog/deep-into-cassandra-internals
http://www.datastax.com/dev/blog/deep-into-cassandra-internals
https://www.youtube.com/user/PlanetCassandra
https://www.youtube.com/watch?v=W6e8_IcgJM4
https://www.youtube.com/watch?v=9Id5me7QFHU
https://issues.apache.org/jira/browse/CASSANDRA
http://git-wip-us.apache.org/repos/asf/cassandra.git
https://cwiki.apache.org/confluence/display/CASSANDRA2/CodeStyle
https://cassci.datastax.com
https://github.com/pcmanus/ccm
https://cwiki.apache.org/confluence/display/CASSANDRA2/HowToReview
https://cwiki.apache.org/confluence/display/CASSANDRA2/HowToReview
https://github.com/riptano/cassandra-dtest
https://github.com/pcmanus/ccm
https://github.com/riptano/cassandra-dtest
https://github.com/riptano/cassandra-dtest.git
https://github.com/riptano/cassandra-dtest/blob/master/tools.py#L329

6.

1.
2.

3.
4.

fail passes, or a test that is not known to fail succeeds, you should check the linked JIRA ticket to see if you've introduced any
detrimental changes to that branch.

Running the code coverage task

Run a basic coverage report of unit tests using .ant codecoverage
Alternatively, run any test task with . Run more test tasks in this fashion to push more ant jacoco-run -Dtaskname=some_test_taskname
coverage data onto the report in progress. Then manually build the report with (the task shown above ant jacoco-report codecoverage
does this automatically).
View the report at .build/jacoco/index.html
When done, clean up JaCoCo data so it doesn't confuse your next coverage report: . ant jacoco-cleanup

Continuous integration

Jenkins runs the Cassandra tests continuously: . For frequent contributors, this Jenkins is set up to build branches from their http://cassci.datastax.com/
GitHub repositories. It is likely that your reviewer will use this Jenkins instance to run tests for your patch.

IDE

Most Cassandra developers use an IDE. Instructions to use IntelliJ IDEA or Eclipse for Cassandra development are available.

RunningCassandraInIDEA
RunningCassandraInEclipse

Committing

Got commit access? Outstanding! Here are the conventions we follow.

Commit messages take the form of

<explanation>

patch by <author>; reviewed by <committer> for CASSANDRA-<ticket>

When committing to multiple branches, start with the most-stable and merge forwards. For instance, if you had a fix to apply to 1.1, 1.2, and trunk, you
would first commit to 1.1, and push changes. Then, switch to your 1.2 branch by doing

 git checkout cassandra-1.2

and run

 git merge cassandra-1.1

If there are conflicts, resolve them and commit, followed by a push. Finally, switch to trunk by doing

 git checkout trunk

and run

 git merge cassandra-1.2

again resolve conflicts if the exist, and commit and push.

See for an in-depth explanation of why fixes should be merged forwards from more-stable branches, http://www.youtube.com/watch?v=AJ-CpGsCpM0
rather than backported from trunk.

This workflow also makes it so git knows what commits have been made to earlier branches but not to trunk: if you forget to merge a fix immediately, the
next time someone goes to merge from the branch, git will incorporate the forgotten ones too.

Bundled Drivers

A copy of the Python driver is included for use in . For instructions on how to package the bundled driver for the Cassandra project, see the cqlsh instructio
.ns here

http://cassci.datastax.com/
https://cwiki.apache.org/confluence/display/CASSANDRA2/RunningCassandraInIDEA
https://cwiki.apache.org/confluence/display/CASSANDRA2/RunningCassandraInEclipse
http://www.youtube.com/watch?v=AJ-CpGsCpM0
https://github.com/datastax/python-driver/blob/master/README-dev.rst#packaging-for-cassandra
https://github.com/datastax/python-driver/blob/master/README-dev.rst#packaging-for-cassandra

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

https://c.statcounter.com/9397521/0/fe557aad/1/

	HowToContribute

