
1.
2.

MemtableSSTable

Overview

Cassandra writes are first written to the , and then to a per-ColumnFamily structure called a Memtable. When a Memtable is full, CommitLog it is written to
.disk as an SSTable

A Memtable is basically a write-back cache of data rows that can be looked up by key – that is, unlike a write-through cache, writes are batched up in the
Memtable until it is full, when it is flushed.

Flushing

The process of turning a Memtable into a SSTable is called flushing. You can manually trigger flush via jmx (e.g. with bin/nodetool), which you may want to
do before restarting nodes since it will reduce CommitLog replay time. Memtables are sorted by key and then written out sequentially. Thus, writes are
extremely fast, costing only a commitlog append and an amortized sequential write for the flush.

Once flushed, SSTable files are immutable; no further writes may be done. So, on the , the server must (potentially, although it uses tricks like read path
bloom filters to avoid doing so unnecessarily) combine row fragments from all the SSTables on disk, as well as any unflushed Memtables, to produce the
requested data.

Compaction

To bound the number of SSTable files that must be consulted on reads, and to reclaim , Cassandra performs compactions: space taken by unused data
merging multiple old SSTable files into a single new one. Compaction strategies are pluggable; out of the box are provided , SizeTieredCompactionStrategy
which combines sstables of similar sizes, and , which sorts sstables into a heirarchy of levels, each an order of magnitude LeveledCompactionStrategy
larger than the previous. As a rule of thumb, .SizeTiered is better for write-intensive workloads, and Leveled better for read-intensive

(For those familiar with other LSM implementations, it's worth noting that Cassandra can remove tombstones without a "major" compaction combining all
.)sstables into a single file

Since the input SSTables are all sorted by key (technically, by token), merging in a compaction can be done efficiently, again requiring no random i/o. Even
so, compaction can be a fairly heavyweight operation. Cassandra takes two steps to mitigate compaction impact on application requests:

Cassandra throttles compaction i/o to compaction_throughput_mb_per_sec (default 16MB/s)
Cassandra will request the operating system pull newly compacted partitions into its page cache when Cassandra's key cache indicates that the
compacted partition was "hot" for recent reads

Once compaction is finished, the old SSTable files will be deleted as soon as any pending reads finish with them as well.

ColumnFamilyStoreMBean exposes sstable space used as getLiveDiskSpaceUsed (only includes size of non-obsolete files) and getTotalDiskSpaceUsed
(includes everything), as well as statistics on average and max partition size.

Further reading

(The high-level memtable/sstable design as well as the "Memtable" and "SSTable" names come from Cassandra's sections 5.3 and 5.4 of Google's
, although some of the terminology around compaction differs.)Bigtable paper

http://wiki.apache.org/cassandra/ArchitectureSSTable

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

https://cwiki.apache.org/confluence/display/CASSANDRA2/Durability
http://www.datastax.com/documentation/cassandra/2.0/webhelp/cassandra/dml/manage_dml_intro_c.html
http://www.datastax.com/documentation/cassandra/2.0/webhelp/cassandra/dml/manage_dml_intro_c.html
http://www.datastax.com/documentation/cassandra/2.0/webhelp/cassandra/dml/dml_about_reads_c.html
https://cwiki.apache.org/confluence/display/CASSANDRA2/DistributedDeletes
#
#
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
https://issues.apache.org/jira/browse/CASSANDRA-1074
https://issues.apache.org/jira/browse/CASSANDRA-1074
#
http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
http://wiki.apache.org/cassandra/ArchitectureSSTable
https://c.statcounter.com/9397521/0/fe557aad/1/

	MemtableSSTable

