
PersistentInterfaces
Persistent Interfaces
Persistent Interfaces is a feature of JDO 2 that allows users to define their domain object model in terms of Java interfaces instead of Java classes. For
example, this defines a persistence-capable class called Company with two persistent fields:

class Company {
 long companyid;
 String name;
}

<class name="Company">
 <field name="companyid" primary-key="true"/>
 <field name="name" column = "NAME"/>
</class>

To use an interface instead, this defines a persistent interface called ICompany with two properties.

interface ICompany {
 long getCompanyid();
 void setCompanyid(long id);
 String getName();
 void setName(String name);
}

<interface name="ICompany">
 <property name="companyid" primary-key="true"/>
 <property name="name" column = "NAME"/>
</interface>

A goal is to map the interfaces in package (hereinafter "the company package") to exactly the same schema as is org.apache.jdo.tck.pc.company
used for the classes, and to use the same and xml data. This way, all of the standard mappings of the company model can be used CompletenessTest
as is, and any bug fixes to the handling of the schema, xml data, or comparison of data will be automatically propagated to the interface tests.

XML Test Data

To change the xml test data to use factories, the attributes and are added to the test data elements.factory-method factory-bean bean

 <bean id="company1" class="org.apache.jdo.tck.pc.company.Company">
 <constructor-arg index="0" type="long">
 <value>1</value></constructor-arg>
 <constructor-arg index="1" type="java.lang.String">
 <value>Sun Microsystems, Inc.</value></constructor-arg>
 <constructor-arg index="2" type="java.util.Date">
 <value>11/Apr/1952</value></constructor-arg>
 </bean>

is changed to become

 <bean id="company1" factory-bean="companyFactory"
 factory-method="newCompany">
 <constructor-arg index="0" type="long">
 <value>1</value></constructor-arg>
 <constructor-arg index="1" type="java.lang.String">
 <value>Sun Microsystems, Inc.</value></constructor-arg>
 <constructor-arg index="2" type="java.util.Date">
 <value>11/Apr/1952</value></constructor-arg>
 </bean>

This requires an instance of Company{{`Factory be registered under the name companyFactory in the Bean}}Factory, which is subclassed by
`Reader.CompanyModel

Refactoring

The company package has been refactored to have each domain class implement the corresponding interface. The algorithm of the CompletenessTest
creates an in-memory domain model graph from xml data and make its elements persistent. Then, a new transient in-memory domain model graph is
constructed from the same xml data and the transient graph is used as the model to verify that the graph of persistent instances as fetched from the
database is isomorphic to the transient graph.

CompanyFactory Patterns

Since persistent instances that implement the persistent interfaces use a factory pattern, we introduce a CompanyFactory concept that allows a runtime
switch between various factories. The transient graph that is used to compare to the persistent graph is always constructed using the factory that creates
instances of the concrete classes. The persistent graph is constructed using one of these patterns:

Company{{`Factory}} `Class: the factory instantiates new instances of the concrete classesConcrete
Company{{`Factory}} `Manager newInstance method with the interfaces as PMInterface: the factory calls the Persistence
parameters
Company{{`Factory}} `Manager newInstance method with abstract classes PMAbstractClass: the factory calls the Persistence
that implement the interfaces as parameters
Company{{`Factory}} `Manager newInstance method with the concrete PMConcreteClass: the factory calls the Persistence
classes as parameters

CompanyFactory Interface

CompanyFactory is the interface that each factory must implement. The methods in the interface are those that are required by the current xml data
implementations. They include constructors for each concrete class in the model.

The strategy for implementation is for a registry class Company{{`Factory}}Registry that instantiates the default implementation of
`Class, that contains methods that instantiate a new instance of the concrete class.CompanyFactory, CompanyFactoryConcrete

An application program, e.g. uses the Company{{`Factory}}CompletenessTest Registry to create and register the company factory,
`Reader (the using the class name and PersistenceManager instance to be used by the company factory. The CompanyModel

bean factory) obtains the company factory instance from the registry via the static method and installs it CompanyFactoryRegistry.getInstance()
in the bean factory under the name "companyFactory". Then, when the xml file is read, the factory-bean reference "companyFactory" is resolved to the
factory.

The Company{{`Factory}}Registry class contains methods to create and register factories. It does not itself implement
`Factory interface.the CompanyFactory interface but delegates to an instance of a class that does implement the Company

Abstract Implementation Class

An abstract class contains implementations for each required method, and eight abstract methods to create a new CompanyFactoryAbstractImpl
instances with no properties set. The properties are then set using setProperty methods. This allows a subclass to implement the CompanyFactory
interface simply by implementing the eight abstract methods.

public abstract class CompanyFactoryAbstractImpl implements CompanyFactory {

 protected PersistenceManager pm;

 /** Creates a new instance of CompanyFactoryAbstractImpl */
 public CompanyFactoryInterfaceAbstractImpl(PersistenceManager pm) {
 this.pm = pm;
 }

 abstract IAddress newAddress(); // implemented in subclass

 public IAddress newAddress(long addrid, String street, String city,
 String state, String zipcode, String country) {
 IAddress result = newAddress();
 result.setAddrid(addrid);
 result.setStreet(street);
 result.setCity(city);
 result.setState(state);
 result.setZipcode(zipcode);
 result.setCountry(country);
 return result;
 }
...

"All a concrete factory implementation has to do" is to subclass the abstract Company{{`Factory}} `Impl and provide implementations for the Abstract
abstract methods.

#
#

public class CompanyFactoryPMInterface
 extends CompanyFactoryInterfaceAbstractImpl {

 /** Creates a new instance of CompanyFactoryPersistentInterface */
 public CompanyFactoryPMInterface(PersistenceManager pm) {
 super(pm);
 }

 IAddress newAddress() {
 return (IAddress)pm.newInstance(IAddress.class);
 }
...

Build Issues

A new system property is used to pick the company factory used to create the persistent object graph. After jdo.tck.mapping.companyfactory
constructing the persistent object graph, the default factory is reset so that during construction of the compared objects the standard constructor is used.
The maven.xml file needs to pass the system property to the CompletenessTest.

 <goal name="doRuntck.jdori">
 <java fork="yes" dir="${jdo.tck.testdir}"
 <sysproperty key="jdo.tck.mapping.companyfactory"
 value="${jdo.tck.mapping.companyfactory}"/>
 </java>
 </goal>

Configurations can specify this property in the .conf file:

%cat test/conf/clr.conf
jdo.tck.description = Completeness test with factory class
#jdo.tck.mapping.companyfactory=
org.apache.jdo.tck.pc.company.CompanyFactoryConcreteClass
jdo.tck.mapping.companyfactory=
 org.apache.jdo.tck.pc.company.CompanyFactoryPMInterface
jdo.tck.classes = org.apache.jdo.tck.mapping.CompletenessTest
jdo.tck.testdata = org/apache/jdo/tck/pc/company/companyNoRelationships.xml
jdo.tck.mapping = 0

New Sub-package acompany

All the components described so far will remain in the company package. I propose to add the components to instantiate persistent abstract classes into a
subpackage, and to implement the abstract classes that implement the interfaces as well as the org.apache.jdo.tck.pc.company.acompany
company factory that instantiates the abstract classes using the persistence manager newInstance method with the abstract class as the argument.

Feeback Requested

The interface Company{{`Factory is implemented by subclasses of Company}} `Impl. Here are proposed names for the components:FactoryAbstract

CompanyFactory seems reasonable
Company{{`Factory}}`Registry is the class that manages the registration of the factory.
Company{{`Factory}} `Factory interface.AbstractImpl is the abstract implementation class for the Company
Company{{`Factory}} `Class is the factory that instantiates new instances of the concrete classesConcrete
Company{{`Factory}} `Manager newInstance method with the interfaces PMInterface is the factory that calls the Persistence
as parameters
Company{{`Factory}} `Manager newInstance method with abstract PMAbstractClass is the factory that calls the Persistence
classes that implement the interfaces as parameters
Company{{`Factory}} `Manager newInstance method with the PMConcreteClass is the factory that calls the Persistence
concrete classes as parameters

	PersistentInterfaces

