
SampleTest
/*
 * Copyright 2005 The Apache Software Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.jdo.tck.api.persistencemanager;

import java.util.Collection;
import java.util.Iterator;

import javax.jdo.Query;
import javax.jdo.Transaction;

import org.apache.jdo.tck.pc.mylib.PCPoint;
import org.apache.jdo.tck.pc.mylib.PCRect;
import org.apache.jdo.tck.util.BatchTestRunner;

/**
 *Title: Only one instance of persistent object in cache per
 PersistenceManager
 *

 *Keywords: cache
 *

 *Assertion ID: A5.4-10.
 *

 *Assertion Description:
JDO implementations must manage the cache of JDO instances such that there is
only one JDO instance, associated with each <code>PersistenceManager</code>
representing the persistent state of each corresponding data store object.
 */

public class OneInstanceOfObjectPerPersistenceManager extends
 PersistenceManagerTest {

 /** */
 private static final String ASSERTION_FAILED =
 "Assertion A5.4-10 (OneInstanceOfObjectPerPersistenceManager) " +
 "failed: ";

 /**
 * The <code>main</code> is called when the class
 * is directly executed from the command line.
 * @param args The arguments passed to the program.
 */
 public static void main(String[] args) {
 BatchTestRunner.run(OneInstanceOfObjectPerPersistenceManager.class);
 }

 /**
 * This test creates objects in one transaction and commits.
 * The important object is p1.
 * Then, in a second transaction, it gets an object p1a by id,
 * gets another object p1b by navigation, and a third object p1c by
 * query. All of these represent the same datastore object and
 * therefore must be identical in the same PersistenceManager.

 */
 public void test() {
 /** The getPM method is declared in a superclass.
 * This is the standard way to get a PersistenceManager.
 * The method automatically gets a PersistenceManagerFactory,
 * gets a PersistenceManager, and puts the PersistenceManager into
 * the field pm.
 */
 getPM();
 /** This is the standard way to get a Transaction.
 */
 Transaction tx = pm.currentTransaction();

 /** Any values for these flags should be set before
 * beginning a transaction.
 */
 tx.setRetainValues(false);
 tx.setRestoreValues(false);

 /** This is the standard way to begin a transaction.
 */
 tx.begin();
 /** Create new objects to be persisted.
 */
 PCPoint p1 = new PCPoint(10, 20);
 PCPoint p2 = new PCPoint(20, 40);
 PCRect rect = new PCRect(0, p1, p2);
 /** This test relies on persistence by reachability.
 */
 pm.makePersistent(rect);
 /** This is the standard way to commit a transaction.
 */
 tx.commit();

 /** Begin a new transaction so that the navigation
 * uses the object id to load the target object into the cache.
 * The RetainValues flag false guarantees that the object fields
 * are no longer loaded.
 */
 tx.begin();
 Object p1Id = pm.getObjectId(p1);
 /** Retrieves the field values from the datastore.
 */
 PCPoint p1a = (PCPoint)pm.getObjectById(p1Id, true);
 /** Navigate to the point.
 */
 PCPoint p1b = rect.getUpperLeft();
 /** Query for the point by its values in the datastore.
 */
 PCPoint p1c = findPoint(10, 20);
 tx.commit();
 tx = null;

 /** Use a StringBuffer to collect results.
 */
 StringBuffer results = new StringBuffer();

 /** Compare the original object with the object obtained
 * by getObjectById.
 */
 if (p1 != p1a) {
 results.append("getObjectById results differ. ");
 }

 /** Compare the original object with the object obtained
 * by navigating from another object.
 */
 if (p1 != p1b) {
 results.append("navigation results differ. ");
 }
 /** Compare the original object with the object obtained

 * by query.
 */
 if (p1 != p1c) {
 results.append("query results differ. ");
 }
 if (results.length() != 0) {
 fail(ASSERTION_FAILED + results.toString());
 }

 /** The standard way to end each test method is to simply return.
 * Exceptions are caught by JUnit.
 * The tearDown method ends the transaction and closes
 * the PersistenceManager.
 */
 }

 /** */
 private PCPoint findPoint (int x, int y) {
 Query q = getPM().newQuery (PCPoint.class);
 q.declareParameters ("int px, int py");
 q.setFilter ("x == px & y == py");
 Collection results = (Collection)q.execute (new Integer(x),
 new Integer(y));
 Iterator it = results.iterator();
 PCPoint ret = (PCPoint)it.next();
 return ret;
 }

}

	SampleTest

