
1.
2.
3.

1.
2.
3.
4.

1.
2.
3.
4.

SynapseOld
*** Attn: This document is DEPRECATED Check http://incubator.apache.org

 for updated information ***/synapse/

Synapse Project
Synapse is creating a robust, lightweight implementation of a highly scalable and distributed service mediation framework based on Web services
specifications. This project is currently under incubation at the Apache Software Foundation; see for details.http://incubator.apache.org/projects/synapse

IRC Chat

The Synapse team has a weekly development-oriented IRC chat on Freenode (irc.freenode.org) on channel #apache-synapse. It takes place every
Thursday at 7AM Pacfic, 10AM Eastern, 8PM Sri Lanka (etc).

Design Notes

Notes from F2F Meeting in Cupertino, CA on September 23rd to 25th.

Milestone 1

Simple rule engine, text format or simple xml
Mediators = classes - no parameters
Log everything
XSLT
Xpath then XSLT or Log

Milestone 2

Text rules format/ syntaxPolicyAttachment
Mediators with parameters and references (via existing or simple IoC container)
same scenarios plus
Script/E4X
Chain, plus other composite mediators
Configuration of QoS

Features

Connect
Protocols
Routing (XPATH)
Loose Source

Manage
Loggging
JMX
Load Balancing/Failover
Schema Validation

Transform
XSLT
E4X
BPEL
Versioning

Types

Explicit Mediation (Expose intranet web services with a explicit firewall with security)
Implicit Mediation (Transparent)

Rules

 Condition Mediator QoS

1 * Log NA

2 wsa:To=

 http://fremantle.org/*

send to

 http://dims.com

Security, Reliable,
Transaction

http://incubator.apache.org/synapse/
http://incubator.apache.org/synapse/
http://incubator.apache.org/projects/synapse
http://wiki.apache.org/ws/Synapse/200509F2F
#
http://fremantle.org/*
http://dims.com

1.
a.

1.

1.

1.

1.

1.

Composition Models

Several Rules (Declarative Model) 2. Composite Mediator (Procedural Model)
Chain Mediator 2. BPEL Mediator 3. Script Mediator

Mediator

Single unit for work 2. Gets a message context 3. Has access to a soap infoset which it can modify 4. Set up using Inversion of control

 public interface Mediator {
 public boolean mediate(MessageContext mc) throws AxisFault;
 }

Synapse implementation using Axis2 (Option #1)

Rule matching engine will be implemented as a module 2. The Rule Matching Handler in Rule matching module will be configured as the first 3.
One Single Dummy Synapse Service with fixed dispatch (using a Synapse Dispatcher) 4. Rule matching engine will engage other modules (ws-
security) as required. 5. There is a Synapse Message Receiver at the end 6. Message Receiver will call instances of mediators as needed 7.
Control will be sent back to Rule matching engine to kick off the next rule.

Synapse implementation using Axis2 (Option #2)

Rule matching engine will be implemented as a Dispatcher 2. Build a chain of modules for each Rule 3. One Single Dummy Synapse Service 4.
There is a Synapse Message Receiver at the end 5. Message Receiver will call instances of mediators as needed 6. Control will be sent back to
Rule matching Dispatcher to kick off the next rule.

Trade Offs

Advantage of Option #2 is that we can set up the chains for each rule and cache it. Option #1 we have to set up chains every time.

Miscellaneous

Addressing is handled as a rule. If a rule needs say wsa:To, addressing rule has to be run/added before that. 2. Mediator can be null. If it is null it
means the result of mediation is true (proceed to the next rule) 3. For each rule, there can be only one mediator (which is run by synapse
message receiver)

Problems

How do we handle request-reponse in the case where we don't have wsa headers or is set to anonymous

Itinerary Example

http://f.org/test/ Security, Send to urn:f:test

urn:f:test Send To machine b

machine B reliable, send to urn:f:version_test

urn:f:
version_test

send to Y

http://f.org/test/

	SynapseOld

