
FrequentlyAskedApplicationDesignQuestions
Application Design FAQ
This document addresses questions about application design which have been raised repeatedly on the HttpClient and HttpComponents . As it mailing lists
addresses design issues rather than API or other HttpClient or specific problems, much of the information presented is equally applicable HttpComponents
for HttpURLConnection or non-Java APIs.

If you are just getting your feet wet and want to understand the basics of client HTTP programming rather than read about application design alternatives,
check out our .primer

Application Design FAQ
Sending Parameters and Uploading Files

GET with Query
POST with URL-encoded Form Data
POST with Multipart Form Data
POST with Query and Data
Further Reading

Client Authentication
Protocol Layers
Basic, Digest, NTLM Authentication
Form Based Authentication
Certificate Based Authentication
Further Reading

Server Performing Login for Client
Why It Should Not Work
URL-based Session Tracking
Cookie-based Session Tracking
Further Reading

Proxy Configuration
System Properties
Operating System Settings
Browser Settings
Further Reading

Sending Parameters and Uploading Files

A question that is asked on a regular basis is:

How do I upload a file along with some parameters?

This section presents different ways to upload parameters, files, and both. It assumes that you are implementing both a client application and a server
application to which the client application connects. The client application might be a Java program using , while the server application is HttpClient
assumed to be a .Servlet

Parameters are name/value pairs, where both name and value are strings. Names should always be in US-ASCII, values may use other character
encodings, depending on the technique used for sending the parameters. Files or rather file parameters are name/value pairs, where the name is a string
and the value is binary data read from a file. Binary values from other sources can be handled similar to files from a design perspective, though the details
of the API will vary.

GET with Query

The simplest way to transfer parameters to the server is the query string of the URL. That's the part after the question mark, for example in:

http:' '?param1=value1¶m2=value2//my.server.name/my/servlet

Query strings can be used with any HTTP method, but they are most frequently used with the GET method. A query string is also the only way to send
parameters with a GET method. (Unless your application encodes parameters into the URL path.)

The names and values of a query string must be URL-escaped. Each space character needs to be replaced by a + character. Reserved characters like =
& % + : / need to be URL-escaped (%xx sequences) with their byte representation (see below). URL-escaping is automatically handled for example by the j

 and classes.ava.net.URI org.apache.commons.httpclient.URI

HTTP Request lines and thus query strings are confined to the ASCII character encoding. Only ASCII names/values can reliably be transferred in a query
string. However it is possible to use a non-ASCII character encoding by URL-escaping the characters. Character encodings (like UTF-8, ISO-8859-1; and
unlike EBCDIC) whose lower 7-bit are compatible with ASCII only need to escape the non-ASCII characters. The character encoding used to create and
interprete the % escape sequences must be the same on the server and on the client. It is common practice to agree on UTF-8. But it is more a
recommendation than a standard and must be verified in individual cases. To avoid problems it is strongly discouraged to send non-ASCII values in the
query string.

Depending on the encoding the following characters are character encoded and URL-escaped as follows:

http://hc.apache.org/mail.html
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpComponents
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/ForAbsoluteBeginners
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/http/HttpServlet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URI.html#URI(java.lang.String,%20java.lang.String,%20java.lang.String,%20int,%20java.lang.String,%20java.lang.String,%20java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URI.html#URI(java.lang.String,%20java.lang.String,%20java.lang.String,%20int,%20java.lang.String,%20java.lang.String,%20java.lang.String)
http://jakarta.apache.org/commons/httpclient/apidocs/org/apache/commons/httpclient/URI.html#setRawQuery(char%5b%5d)

cha
r

ASCI
I

ISO-8859-
1

UTF-8 EBCDI
C

A A A A %E1

ä N/A %E4 %C3%
A4

N/A

& %26 %26 %26 %70

On the server, name/value pairs sent in a query string are available as parameters of the .ServletRequest
%xx escape sequences and + characters are automatically decoded by the Servlet API. If non-ASCII values are sent in the query string, the outcome
depends on the implementation of the Servlet API, the Content-Type header and possibly also on configuration parameters, such as the JVM default
character set. That's why it is strongly discouraged to send non-ASCII values in the query string.

POST with URL-encoded Form Data

Unlike the GET method, a POST method has a message body or entity which can hold any kind of binary or non-binary data. A simple way to send
parameters with string values to the server is to put the query string into the message body instead of the URL. This avoids URL length restrictions,
problems with parameters being logged where they shouldn't, and it also allows for non-ASCII characters in the values. While a URL is confined to ASCII
characters, the message body is not. The character set can be specified in a header field. The encoding of special characters is automatically handled by H

's .ttpClient PostMethod

On the server, name/value pairs sent in a message body with content type "application/x-www-form-urlencoded" are available as parameters of the Servlet
. If there are parameters in both the message body and the query string, all of them are available in the ServletRequest.Request

POST with Multipart Form Data

In order to upload binary data such as files, the data can be encoded as multipart . That's the same format which is used for sending email MIME
attachments. HTML forms for uploading files have to specify the content type "multipart/form-data" so the browser knows that the multipart MIME encoding
must be applied. That content type is also sent to the server. provides the class to perform multipart MIME encoding.HttpClient MultipartRequestEntity

On the server, parameters sent as multipart MIME are available as parameters of the . The servlet has to read and interpret the not ServletRequest
message body explicitly. There are libraries for parsing multipart MIME data, for example . It should also be possible to parse Commons FileUpload
multipart/form-data using the . If there are parameters in both the message body and the query string, only those from the query string are JavaMail API
available in the ServletRequest.

POST with Query and Data

In the special case that you need to upload only parameters with ASCII string values and a single file, there is another option. You can send the
parameters in a query string and the file contents as the message body. This does not require special encoding or decoding of the binary data. This kind of
request can not be generated by an HTML form.

With this approach, the file is not sent as a name/value pair. Only the value, that is the file contents, will be transferred. The servlet has to know what to do
with the file based only on the information in the URL (and HTTP headers). The information in the URL can come from the query string (?name=MyImage.
png), from the URL path (/my/servlet/save), or both.

You should specify a content type that indicates the type of data you are sending in the message body, such as "application/octet-stream" or "image/png"
or whatever else is appropriate for the file you are uploading. If you are uploading a text file, you should also specify the character set as part of the
content type.

On the server, the parameters sent in the query string are available as parameters of the . The file contents is available as from the ServletRequest
ServletRequest as either orbinary

 data.character

Further Reading

Java Standard Edition 5.0, HttpURLConnection

IANA: Registered MIME Media Types

HTML 4.01: Form Content Types

Sun: Java Servlet Technology Documentation

Servlet API 2.3

Java Enterprise Edition 5.0, Servlet API 2.4

JavaMail

Java Enterprise Edition 5.0, JavaMail API

Client Authentication

http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getParameter(java.lang.String)
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
http://jakarta.apache.org/commons/httpclient/apidocs/org/apache/commons/httpclient/methods/PostMethod.html
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getParameter(java.lang.String)
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getParameter(java.lang.String)
http://www.ietf.org/rfc/rfc1521.txt
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
http://jakarta.apache.org/commons/httpclient/apidocs/org/apache/commons/httpclient/methods/multipart/MultipartRequestEntity.html
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getParameter(java.lang.String)
http://jakarta.apache.org/commons/fileupload/
http://java.sun.com/products/javamail/FAQ.html#attach
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getParameter(java.lang.String)
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getInputStream()
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/ServletRequest.html#getReader()
http://java.sun.com/j2se/1.5.0/docs/api/java/net/HttpURLConnection.html
http://www.iana.org/assignments/media-types/
http://www.w3.org/TR/html401/interact/forms.html#form-content-type
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/2.3/javadoc/
http://java.sun.com/javaee/5/docs/api/javax/servlet/package-summary.html
http://java.sun.com/products/javamail/reference/index.html
http://java.sun.com/javaee/5/docs/api/javax/mail/package-summary.html

There are different techniques by which a client can establish it's identity to a server in a web environment. We repeatedly got questions from users who
were not aware of the differences between those techniques. This section presents the common authentication techniques and puts them in the
appropriate context.

Protocol Layers

Whenever a web client communicates with a web server, there are communications on different protocol layers. The following diagram shows the layers
relevant for this discussion:

Application Layer

HTTP Layer

Transport Layer

At the top, there is the application layer. That is your client application communicating with a web application. The web application can for example be
comprised of some servlets and JSPs. Your application will create and send requests and interpret the responses to achieve some purpose specific to
your application.

The middle layer is where HTTP communication takes place. That is or (or) exchanging HTTP HttpClient HttpComponents java.net.HttpURLConnection
messages with an HTTP server. HttpClient is not aware of the purpose of the messages. It merely knows how to generate and parse the HTTP message
format, and how to handle some HTTP protocol details such as redirects and cookies.

At the bottom is the transport layer. That is the operation system connecting sockets to the computer on which the HTTP server is running. Or it is a TLS
/SSL library creating a secure connection to that computer. On this layer, it is just binary data passing between the machines. The transport layer is not
aware of the data being HTTP messages, let alone of the purpose for which the application is communicating.

This layered structure is not obvious to the casual user. When using a browser, you don't care whether your input is interpreted by the HTML engine on the
application layer, or by the HTTP implementation on the HTTP layer, or by the TLS/SSL implementation on the bottom layer. Likewise, if you are
developing a web application for example in a J2EE environment, you're looking at the protocol layers from the top down and don't care where the
functionality is provided.

However, HttpClient is . If you are developing an application with HttpClient or some other HTTP implementation, you have to be aware of not a browser
this structure. Client authentication can be performed on each of the three layers, but HttpClient is only responsible for the middle layer. You will need to
use other APIs for authentication on the application or transport layer.

Basic, Digest, NTLM Authentication

These authentication techniques operate on the HTTP layer and are supported to some degree by . Basic and Digest authentication are HttpClient
specified in . Both are fully supported by HttpClient. A browser will typically pop up an authentication dialog asking for the password to a specific RFC 2617
server. The password will be asked only once for each session. If NTLM authentication is used and the password is the same as the Windows password,
there may be no authentication dialog at all (single sign-on, SSO).

Basic authentication is considered insecure because it sends the user password in plain text (unprotected) with each request. That is only acceptable to
some degree in intranets or when using TLS/SSL secure connections (HTTPS). It is generally not acceptable when using insecure connections over the
internet.

Digest authentication is more secure than basic authentication because the password itself is not sent to the server. Instead, a hash of the password is
created and sent. Digest authentication is rarely used, since in order to verify the hash, the server needs to know the user password in plain text. User
repositories will typically not store passwords in plain text, but rather hashes of the password. Therefore, digest authentication can not be performed using
such repositories. Storing passwords in plain text on the server backend systems introduces a weak spot into the server side architecture.

NTLM authentication comes in several varieties, all of which are proprietary authentication protocols by Microsoft. HttpClient partially supports NTLM
authentication, as explained in the . The older versions, or lower levels, of NTLM authentication suffer from the same weakness as Basic NTLM FAQ
authentication. The newer versions rectify this, but the protocols are not publicly documented. There are no open source implementations of the newer
versions.

Form Based Authentication

The form based authentication technique operates on the application layer. When using a browser, username and password have to be entered in an
HTML form. They will be sent to the server only once. After successful authentication, the server remembers that this client is authenticated and will not
ask for the password again during that session. Session tracking often requires a cookie.

From the perspective, submitting a form for client authentication is no different from submitting a form for a search query or any other purpose. HttpClient
Instructions on how to support session tracking and simulate form submission are available in the .Client HTTP Programming Guide

Form based authentication is more secure than basic authentication. Although it also transmits the password in plain text, it does so only once and not with
every request. Still, when used over the internet, from based authentication should use a secure TLS/SSL connection at least for the login procedure.
Afterwards, the session can be continued over plain connections, as the password is not sent again.

Certificate Based Authentication

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpComponents
http://java.sun.com/j2se/1.5.0/docs/api/java/net/HttpURLConnection.html
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/ForAbsoluteBeginners
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
http://www.ietf.org/rfc/rfc2617.txt
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/FrequentlyAskedNTLMQuestions
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/ForAbsoluteBeginners

Certificate based (client) authentication operates on the transport layer. It is part of the TLS/SSL protocol. Instead of using a password, certificate based
authentication relies on public key cryptography. A private key is stored on the client and used to authenticate against the server. A browser will typically
pop up a password dialog, asking for the password to the local key store. The password is never sent to the server, it is only used locally to gain access to
the private key. The private key itself is never sent either.

From the perspective, certificate based authentication is performed transparently when a secure TLS/SSL connection is established to a server. HttpClient
Transparently means that HttpClient doesn't know anything about the authentication at all. You have to install a that SecureProtocolSocketFactory
automatically authenticates the client if requested by the server. This includes asking the user for the password to the local key store.

Certificate based client authentication is the most secure of the authentication techniques discussed here. The drawback is that it requires a complex
public key infrastructure () to be put in place. Certificates holding the public keys for each client need to be available in the server's user repository, and PKI
the private keys have to be deployed on each client machine. Issuing the certificates for all clients is itself a complex task.

Further Reading

The J2EE 1.4 Tutorial, Security (SUN)

RFC 2617: HTTP Authentication: Basic and Digest Access Authentication

J2EE Form Based Authentication (onJava.com)

Wikipedia: Public Key Infrastructure

RFC 2246: The TLS Protocol Version 1.0

RFC 3546: Transport Layer Security (TLS) Extensions

Server Performing Login for Client

Once in a while, somebody wants a server or proxy to perform login to a different site on behalf of the client, then handing the session over to the client.
Since the authentication is already performed by the server or proxy, the client is not supposed to ask the user for credentials.

In general, this is . We mean it. It is possible. Seriously. Unless very specific conditions are met, there is .not possible not no way

Why It Should Not Work

Imagine you are a server called Bob. Alice logs in to you, providing her credentials. Then Charlie appears, trying to access Alice's data. Charlie has no
credentials, he just says: "Alice logged in on my behalf." Sounds fishy, does it not? Would you believe Charlie?

So, what are the conditions which might allow this to happen anyway? Firstly, authentication must apply to a session rather than the individual requests.
This usually implies form-based authentication (see above) and the existence of a session ID. Secondly, the server configuration must be a bit negligent
regarding security. The rest depends on the type of session tracking.

URL-based Session Tracking

If the user session is tracked in the URL, the handover is simple. Just send the URL including the session ID from the proxy or server to the client. If the
server does not notice the change of the client IP address, you are lucky. A URL with session identifier could look like this:
http_'_'://webmail.where.ever/xml/webmail;jsessionid=89702CCE20F2401326843985B0FB546F.TC159b

Cookie-based Session Tracking

If the user session is tracked with a session cookie, the handover is problematic. If your server or proxy is in the same domain as the site you want to login
to, you can send the session cookie obtained from the target site on to the client, setting it at the domain level. This may or may not work, depending on
additional security checks by the server. It may interfere with session tracking of other servers in the same domain, causing 'inexplicable' malfunctions of
seemingly unrelated web applications for the client.

A better solution would be to create a Single Sign-On (SSO) domain for your server or proxy and the target site. Check the documentation of your
application server(s) for information on Single Sign-On.

If your server or proxy is in the same domain as the site you want to login to, you are out of luck.not

If you find a way to make this work across domains, please report a security vulnerability against the browser.

If you don't know what all that stuff about cookies and domains means, you shouldn't implement this kind of security sensitive application in the first place.

Further Reading

Wikipedia: Alice and Bob

Java EE 5 Tutorial: Session Tracking

Wikipedia: Cross-site Cooking

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
http://jakarta.apache.org/commons/httpclient/apidocs/org/apache/commons/httpclient/protocol/SecureProtocolSocketFactory.html
http://en.wikipedia.org/wiki/Public_key_infrastructure
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview6.html
http://www.ietf.org/rfc/rfc2617.txt
http://www.onjava.com/pub/a/onjava/2002/06/12/form.html
http://en.wikipedia.org/wiki/Public_key_infrastructure
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3546.txt
http://en.wikipedia.org/wiki/Alice_and_Bob
http://java.sun.com/javaee/5/docs/tutorial/doc/Servlets11.html#wp64784
http://en.wikipedia.org/wiki/Cross-site_cooking

Wikipedia: Single sign-on

Proxy Configuration

HttpClient takes proxy configuration data from objects. These can either be passed explicitly when a method is executed (HttpClient HostConfiguration
3.1), or the default configuration stored in the HttpClient object is used. Some of our users have the requirement to pick up external proxy configurations.
The following sections discuss some options for obtaining external proxy configuration data.

Please note that HttpClient is designed to yield predictable results for applications in need of an embedded HTTP implementation. If HttpClient would
automatically pick up external configuration data, predictability would be lost. Therefore, it remains the responsibility of the to obtain proxy application
configuration data and to pass it to HttpClient. We will consider to provide helpers for this task if patches are contributed, but the responsibility for calling
such helpers would still remain with the application.

System Properties

Up to and including Java 1.4, the standard Java implementation of HTTP, which is accessible through the class, expects proxy HttpURLConnection
configuration data in system properties. The names of the properties that affect different protocols (HTTP, HTTPS, FTP,...) have changed over time. The
two most prominent examples are and . You can read the values of these properties and supply the configuration as http.proxyHost http.proxyPort
shown in the example below.

Note that other properties will also affect the standard Java HTTP implementation, for example a list of proxy exemptions in . It is http.nonProxyHost
your application which must decide whether the external proxy configuration is applicable or not.

 String proxyHost = System.getProperty("http.proxyHost");
 int proxyPort = Integer.parseInt(System.getProperty("http.proxyPort"));

 String url = "http://www.google.com";

 HttpClient client = new HttpClient(new MultiThreadedHttpConnectionManager());
 client.getHttpConnectionManager().getParams().setConnectionTimeout(30000);

 client.getHostConfiguration().setProxy(proxyHost,proxyPort);

 GetMethod get = new GetMethod(url);
 get.setFollowRedirects(true);
 String strGetResponseBody = null;

 try {
 int iGetResultCode = client.executeMethod(get);
 strGetResponseBody = get.getResponseBodyAsString();
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 get.releaseConnection();
 }

Since Java 5.0, the class allows for a more flexible, per-connection proxy configuration of the default HTTP implementation. Because ProxySelector
HttpClient 3.1 is compatible with Java 1.2, it cannot support that class directly. However, your application can make use of the default to ProxySelector
pick up the standard proxy configuration and pass it to HttpClient. HttpClient 4.0 requires Java 5 and will include an optional proxy selection mechanism
based on . If you choose to obtain your proxy configuration elsewhere, you will of course still be able to do that, too.ProxySelector

Operating System Settings

On Linux and Unix systems, a proxy on the operating system level is typically set in environment variables. The Java method for reading environment
variables is . Unfortunately, it is deprecated and not even implemented in some Java versions (JDK 1.4?). The recommended replacement System.getenv
is to pass relevant environment variables as system properties by using

 options when starting your application. See above for reading a proxy configuration from system properties. Of course you can use -Dname=value
custom property names in order to pass values without affecting the default HTTP implementation.

If using options is not feasible and you are stuck with a JVM that does not implement , you can try to run a shell script using -D System.getenv Runtime.
. The shell script should print the relevant environment variables to standard output, from where your application can parse them.exec

On Windows systems, the proxy configuration is typically set in the registry. You can either use to read the registry, or try to run a shell script native code
(batch file) as mentioned for the Linux/Unix case.

If you know something about proxy settings on Mac OS, please share that information. You can edit this Wiki page directly, or send a mail to one of our mai
.ling lists

http://en.wikipedia.org/wiki/Single_sign-on
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
http://jakarta.apache.org/commons/httpclient/apidocs/org/apache/commons/httpclient/HostConfiguration.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/HttpURLConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ProxySelector.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/System.html#getenv(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runtime.html#exec(java.lang.String%5b%5d)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runtime.html#exec(java.lang.String%5b%5d)
http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html
http://jakarta.apache.org/httpcomponents/mail-lists.html
http://jakarta.apache.org/httpcomponents/mail-lists.html

Browser Settings

When an applet uses , the Java plug-in running the applet will automatically pick up the proxy configuration of the browser, and also HttpURLConnection
cookies stored in the browser. This is described in the for JDK 1.4, andJava plug-in Developer Guide chapter 5

 respectively. While this documentation explains the complexity of obtaining the proxy configuration, it does not mention a public API from which chapter 7
an application could pick it up.

Since Java 5.0, you can use the default mentioned in the section on system properties above. When running in the Java plug-in, it will ProxySelector
provide access to the browser proxy configuration.

If you know how to access the browser proxy configuration in previous versions of the Java plug-in, please share that information. You can edit this Wiki
page directly, or send a mail to one of our .mailing lists

If you know how to access the browser cookie store from an applet, please share that information too. Send a mail to one of our or start a new mailing lists
section in this Wiki page.

Further Reading

Networking Properties, Java 1.4

Java Networking and Proxies, Java 5.0

Java Native Interface

Java Plug-in, Java 1.4

Proxy Configuration, Deployment Guide for Java 5.0

http://java.sun.com/j2se/1.4.2/docs/api/java/net/HttpURLConnection.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/contents.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/proxie_config.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/cookie_support.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ProxySelector.html
http://jakarta.apache.org/httpcomponents/mail-lists.html
http://jakarta.apache.org/httpcomponents/mail-lists.html
http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/proxies.html
http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/proxie_config.html

	FrequentlyAskedApplicationDesignQuestions

