
1.

2.
3.
4.

5.

6.
7.

1.

2.

GitGuidelines
This is a proposal/draft how we should coordinate our work after migrating and to Git. Especially to avoid a messy log.HttpCore HttpClient

Typical Issue Workflow
Branch off a release branch (e.g., 4.4.x, 5.0.x) () where being the git checkout -b <release branch>/<JIRA id> master <JIRA id>
JIRA issue you have assigned to yourself, e.g., HTTPCORE-123 or HTTPCLIENT-689. Exmaple: git checkout -b 4.4.x/HTTPCORE-123

.4.4.x
Work on your issue and create as many commits as you want/need
Polish it, squash it or fix it up into a single commit
Ask for a review if you are uncertain

Take care of a proper commit message (good reads: and): Put the title of the JIRA issue, e.g., [HTTPCORE-123] Memory leak in 1 2
response, in the first line, followed by an explanation why you did take this approach. The ticket desc contains the issue, your commit message
contains the solution. If in doubt, ask for help and give people a couple of days to react.

Request the release manager to merge your banch back to the release branch and make sure that this merge won't incur a merge commit
When you close the issue, put a link to your commit to create a direct relation between issue and solution.

Side Notes
Never rewrite (rebase) history on master or any other long-lived branch because you will break others. Only the release manager is entitled to
clean up history upto 72 hours after a commit if it is absolutely necessary
If a change comes for a PR on :GitHub

Apply the same above rules
Don't steal authorship
Let the reporter polish his work
Amend the message at the end with "This closes/fixes #xy" and push.

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpCore
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://chris.beams.io/posts/git-commit/
https://github.com/erlang/otp/wiki/Writing-good-commit-messages
#

	GitGuidelines

