HttpClientConfiguration

HttpClient configuration and prefernece API

HttpClient customization
HttpClient instances can be created either using HttpClientBuilder or factory methods of the HttpClients utility class.

This code snippet shows how to create HttpClient instance with default configuration. The instance will be configured to use a pool of connections with
maximum two concurrent connections for the same route (host).

Cl oseableHttpClient client = Htpdients.createDefault();

This code snippet shows how to create an HttpClient instance based on system properties. The instance will be configured to use a pool of connections.
The following system properties will be taken into account:

ssl.TrustManagerFactory.algorithm
javax.net.ssl.trustStoreType
javax.net.ssl.trustStore
javax.net.ssl.trustStoreProvider
javax.net.ssl.trustStorePassword
java.home
ssl.KeyManagerFactory.algorithm
javax.net.ssl.keyStoreType
javax.net.ssl.keyStore
javax.net.ssl.keyStoreProvider
javax.net.ssl.keyStorePassword
http.proxyHost

http.proxyPort
http.nonProxyHosts
http.keepAlive
http.maxConnections

http.agent

Cl oseabl eHttpdient client = HtpCients.createSysten();

This code snippet shows how to create an HttpClient instance with a minimal configuration. This instance will be configured to use a pool of connections
with maximum two concurrent connections for the same route (host). The only request level configuration parameters that the minimal HttpClient takes into
account are timeouts (socket, connect, and connection request). All other request parameters will have no effect on request execution.

Cl oseabl eHttpOient client = HitpCients.createM nimal();

Please note that HttpClient instances created with HttpClientBuilder or HttpClients are immutable. Their configuration can no longer be altered.

This code snippet shows how to create an HttpClient instance with a custom configuration. One can disable certain protocol aspects such as automatic
redirect handling to have them completely removed from the request execution chain and make request execution more efficient.

Cl oseabl eHttpClient httpclient = HtpCQients.custom)
. di sabl eAut onati cRetri es()
. di sabl eConnectionSt at e()
. di sabl eCont ent Conpr essi on()
. di sabl eRedi rect Handl i ng()
.useSyst enProperties()
Lbuild();

One can choose to configure HttpClient to use system properties and then explicitly override only specific aspects through custom configuration.

Cl oseabl eHttpClient httpclient = HtpCQients.custom)
.useSyst enProperties()
. set Proxy(new HttpHost ("nyproxy", 8080))
Lbuild();

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
#
#
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
#
#
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient

Request configuration

This code snippet shows how to create custom request configuration.

Request Confi g def aul t Request Confi g = Request Confi g. custom()
. set Socket Ti meout (5000)
. set Connect Ti neout (5000)
. set Connect i onRequest Ti neout (5000)
. set St al eConnect i onCheckEnabl ed(true)
.build();

Request configuration can either be set at the client level as defaults for all requests without explicit configuration or at the request level.

Cl oseabl eHttpdient httpclient = Htpdients. custom()
. set Def aul t Request Confi g(def aul t Request Confi g)
.build();

Please note that requests do not automatically inherit client level request configuration, if it overridden at the request level. Configuration defaults must be
explicitly copied.y

Hit pGet httpget = new HttpGet("http://ww.apache.org/");

Request Confi g request Confi g = Request Confi g. copy(def aul t Request Confi g)
. set Proxy(new HttpHost (" nyot her proxy", 8080))
.bui I d();

htt pget. set Confi g(request Config);

Request execution context

HTTP protocol processors used internall by HttpClient are state-less, that is, they maintain no conversational between individual HTTP exchanges.
However, conversational state such as HTTP cookies or authentication details can be preserved in the execution context represented by HttpClientContext
class.

The execution context can be shared by multiple HTTP exchanges if they belong to the same logical HTTP session. The context can be set up with a
particular state prior to executing the HTTP session. The context will also be updated in the course of the session. The conversational state can be
examined and updated after each individual HTTP exchange.

Default settings and configuration at the client level will be automatically added to the execution context if not explicitly set in the context by the user.

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
#

Cl oseabl eHttpClient httpclient = HtpCients.custom)
. set Def aul t Cooki eSt or e(def aul t Cooki eSt or e)
. set Def aul t Credent i al sProvi der (def aul t Credenti al sProvi der)
. set Def aul t Request Confi g(def aul t Request Confi @)
cbui 1 d();

Ht t pd i ent Context context = HtpdientContext.create();
cont ext . set Cooki eSt or e(cust onCooki eSt ore) ;

cont ext . set Credenti al sProvi der (cust onCr edent i al sProvi der);
cont ext . set Request Confi g(cust onRequest Confi g)

Hit pGet httpget = new HttpGet("http://ww.apache.org/");
Cl oseabl eHt t pResponse response = httpclient.execute(httpget, context);
try {

/1 Last executed request

cont ext . get Request () ;

/| Execution route

cont ext. get Ht t pRout e() ;

/] Target auth state

cont ext . get Target Aut hState();

/1 Proxy auth state

cont ext . get Target Aut hState();

/1 Cookie origin

cont ext . get Cooki eOrigin();

/| Cooki e spec used

cont ext . get Cooki eSpec();

/] User security token

cont ext . get User Token() ;

} finally {
response. cl ose();

Connection management and configuration

This code snippet shows how to create a HttpClientConnectionManager instance that keeps a pool of re-usable persistent connections. By default the
connection manager will allow no more than 2 concurrent connections for the same route and no more than 20 connections in total.

Pool i ngHt t pCl i ent Connect i onManager connManager = new Pool i ngHtt pCl i ent Connecti onManager () ;

These limits can be customized if desired. One can also specify a different maximum limit specifically for a particular host.

connManager . set MaxTot al (100);
connManager . set Def aul t MaxPer Rout e(10) ;
connManager . set MaxPer Rout e(new Ht t pRout e(new Htt pHost (" sonehost”, 80)), 20);

The PoolingHttpClientConnectionManager class can apply different configuration parameters to network sockets and HTTP connections. Socket and
connection configuration can be set as defaults or applied to a specific host.

This code snippet shows how to set socket configuration.

Socket Confi g defaul t Socket Config = Socket Confi g. cust on()
. set TcpNoDel ay(true)
.build();
Socket Confi g socket Confi g = Socket Confi g. custon()
. set TcpNoDel ay(true)
. set SoKeepAl i ve(true)
. set SoReuseAddr ess(true)
.bui I d();

connManager . set Def aul t Socket Confi g(def aul t Socket Confi g);
connManager . set Socket Confi g(new Htt pHost ("sonehost”, 80), socketConfig);

This code snippet shows how to set socket configuration.

#
#

MessageConstrai nts messageConstrai nts = MessageConstraints. custon()
. set MaxHeader Count (200)
. set MaxLi neLengt h(2000)
Lbuild();
Connecti onConfi g defaul t ConnectionConfig = ConnectionConfig.custon()
. set MessageConst rai nt s(nessageConstrai nt s)
Lbui I d();
Connecti onConfi g connecti onConfig = ConnectionConfig.custon()
. set MessageConst r ai nt s(messageConstrai nts)
. set Mal f or nedl nput Acti on(Codi ngError Acti on. | GNORE)
. set Unmappabl el nput Act i on(Codi ngErr or Act i on. | GNORE)
. set Char set (Const s. UTF_8)
.build();
connManager . set Def aul t Connect i onConf i g(def aul t Connecti onConfi g);
connManager . set Connect i onConfi g(new Ht t pHost (" sonehost", 80), connectionConfig);

A custom connection factory can also be used to customize the process of initialization of outgoing HTTP connections. Beside standard connection
configuration parameters HTTP connection factory can control the size of input / output buffers as well as determine message parser / writer routines to be
employed by individual HTTP connections. Custom message parser / message writer are responsible for marshaling / un-marshaling of HTTP messages
transferred over the HTTP connection. There are situations when one may want to employ a more lenient parsing when dealing with broken or non-
compliant server side scripts.

Ht t pMessagePar ser Fact or y<Ht t pResponse> responsePar ser Factory = new Def aul t Ht t pResponsePar ser Factory() {

@verride

public Htt pMessagePar ser <Ht t pResponse> creat e(
Sessi onl nput Buf f er buffer, MessageConstraints constraints) {
Li neParser |ineParser = new BasicLi neParser() {

@verride
publi c Header parseHeader (Char ArrayBuffer buffer) {
try {
return super. parseHeader (buffer);
} catch (ParseException ex) {
return new Basi cHeader (buffer.toString(), null);

}
}
b
return new Def aul t Ht t pResponsePar ser (
buffer, lineParser, DefaultHtpResponseFactory.|NSTANCE, constraints) {
@verride
protected bool ean reject(CharArrayBuffer line, int count) {
/1 try to ignore all garbage preceding a status line infinitely
return fal se;
}
b

b
Ht t pMessageW i t er Fact or y<Ht t pRequest > request WiterFactory = new Defaul t H t pRequest Wi terFactory();
Ht t pConnect i onFact or y<Socket Cl i ent Connecti on> connFactory = new Defaul t d i ent Connecti onFact ory(
8 * 1024, requestWiterFactory, responseParserFactory);
Pool i ngHt t pCl i ent Connect i onManager connManager = new Pool i ngHtt pCl i ent Connecti onManager (connFactory);

Client HTTP connection objects when fully initialized can be bound to an arbitrary network socket. The process of network socket initialization, its
connection to a remote address and binding to a local one is controlled by a connection socket factory. It is generally recommended to provide a
connection socket factory for SSL connections with a custom configuration as generally security requirements tend to be application specific.

SSL context for secure connections can be created either based on system or application specific properties.

SSLCont ext ssl context = SSLSocket Factory. creat eSyst enSSLCont ext () ;

One can also choose a custom hostname verifier to customize the process of hostname verification.

X509Host naneVeri fier hostnaneVerifier = new Browser Conpat Host naneVerifier();

This code snippet shows how to create a registry of custom connection socket factories for supported protocol schemes.

Regi st ry<Connect i onSocket Fact ory> socket Fact oryRegi stry = Regi stryBuil der. <Connecti onSocket Fact ory>creat e()
.register("http", PlainSocketFactory.| NSTANCE)
.register("https", new SSLSocket Factory(sslcontext, hostnaneVerifier))
.build();

One can use a custom DNS resolver to override the system DNS resolution.

DnsResol ver dnsResol ver = new Syst enDef aul t DnsResol ver () {

@verride
public I netAddress[] resolve(final String host) throws UnknownHost Exception {
if (host.equal sl gnoreCase("nmyhost")) {
return new | net Address[] { |netAddress. get ByAddress(new byte[] {127, 0, 0, 1}) };
} else {
return super.resol ve(host);

}

1

This code snippet shows how to put together a pooling HttpClientConnectionManager with custom connection factory, socket factories and DNS resolver

Pool i ngHt t pC i ent Connect i onManager connManager = new Pool i ngHtt pd i ent Connect i onManager (
socket Fact oryRegi stry, connFactory, dnsResolver);

Cl oseabl eHttpClient httpclient = HitpCients. custom()
. set Connect i onManager (connManager)
.build();

Custom connection socket factories can also be provided at the request level through a local execution context. This will cause HttpClient to override the
default socket initialization routines with those specified in the execution context.

Ht t pd i ent Context context = HtpdientContext.create();
cont ext . set Socket Fact or yRegi stry(socket Fact oryRegi stry);

Please note that if a custom HTTP connection is kept alive after the request execution it may be pooled and re-used for execution of other requests.

#
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient

	HttpClientConfiguration

