GBeans

(D Stale Content

The content of this page is growing stale and may or may not contain relevant, useful or correct information.

Overview

A GBeanMBean is a J2EE Management Managed Object, and is standard base for Geronimo services. GBean is a class or object that Geronimo the
container can manage the lifecycle of. So, for example, when you deploy parts into a container you want to start them and stop them, and they have
dependencies: Such as 'Bean A' can only start up when 'Bean B' is ready to go because 'Bean B' provides services that 'Bean A' needs. So, GBeans are
Geronimo's way of packaging up things are that need to be managed, and can express dependencies. The GBeans architecture lies at the heart of
Geronimo's power to enable developers to move or work with their existing J2EE assets, whether Open Source or commercial.

GBeans are designed to let you take things you have, put a GBean wrapper around them, and use that to bridge the JSR 77 lifecycle requirements which
GBeans support). You can take anything lying around and get it to work with GBeans. In addition, the GBeans will let developers bring other existing Open
Source Java projects into the Geronimo orbit.

This wraps one or more target POJOs and exposes the attributes and operations according to a supplied GBeanlinfo instance. The GBeanMBean also
supports caching of attribute values and invocation results which can reduce the number of calls to a target.

® Gbeans are way of providing managements services to Geronimo

® |tis implemented on top of the IMX right now but supposes to be independent of JMX. User should be able to use them without knowledge of the
JMX. And it can be make independent of GBeans .

® The GBean can be converted into the MBean using the GBeanMBean and use the JMX to give the services

Sample GBeans

Grab the source code and search for the implementators of the GBeanLifecycle. It is a good way to find GBeans examples. It's been found that the jetty
module and the GBeanTest class are quite helpful.

TODO: Add the fully qualified class names

How to write GBean

* A GBean may implement the optional org.apache.geronimo.gbean.GBeanLifecycle interface. When a GBean implements this interface, the
implementation will get lifecycle callbacks.

® They can have attributes with getters and setters. There are attributes that are final and | think they are standard .. (What is the list of them) e.g.
name, Kernel (they can use to get hold of the system info, have a look at the sample GBeans.) There are ordinary attributes .. have getters and
setters

® GBeans can have methods ..

® A GBean's constructor MUST NOT call its own member functions which are declared in its GBeanlInfo!!!

® A GBean MUST implement a method having the following signature:

public static GBeanl nfo get GBeanl nfo()

This method provides meta-data about the attributes, operations and references exposed or used by the GBean. It is standard practice (a Geronimo
pattern) to initialize this meta-data in a static block initializer. The following block depicts such an approach:

® public static final GBeanlnfo GBEAN_|I NFO

static {
GBeanl nf oBui | der i nfoBuil der = new GBeanl nf oBui | der (" Axi sGbean", Axi sGbean. cl ass);
i nf oBui | der. addAttri bute("nanme", String.class, true);

i nfoBuil der.addAttribute("kernel", Kernel.class, false);
i nf oBui | der. addOper ati on("echo", new O ass[]{String.class});
i nf oBui | der. set Constructor(new String[] {"kernel","Nanme"});

GBEAN_I NFO = i nf oBui | der. get Beanl nfo() ;

Attributes and references MUST be compliant wit the following naming conventions: attributes MUST start with a lower case first character; and references
must should start with an upper case first character. This simple naming convention should simplify the configuration of a GBean.

Step 1: Your first simple GBean

#
#

® package exanplel;

i nport org. apache. ger oni mo. gbean. GBeanl nf o;
i mport org. apache. geroni nb. gbean. GBeanl nf oBui | der;

public class MyGBean {
public static final GBeanlnfo GBEAN_I NFO

static {
GBeanl nf oBui | der i nfoBuil der = new GBeanl nf oBui | der (" MyGBean", M/GBean.cl ass);

GBEAN_I NFO = i nf oBui | der. get Beanl nfo();
}

public static GBeanlnfo getGBeanlnfo() {
return GBEAN_I NFO

}

Compile the class using the following command (TODO: create a maven task to compile a user's gbeans; simply find a better way).

® $ javac -classpath <geroni no_honme>/ assenbl y/target/geroni no- 1. 0- SNAPSHOT/ | i b/ ger oni no- ker nel - 1. 0-
SNAPSHOT. j ar exanpl el/ MyGBean. j ava

TODO: Change what follows in this section (temporarily useful)
Create a jar with the gbean class and place it into <geronimo_home>/assembly/target/geronimo-1.0-SNAPSHOT/repository/examplel.
® $ jar -Mvf nygbean.jar exanplel/*.class

$ nkdir <geroni no_hone>/ assenbl y/target/repository
$ cp nygbean.jar <geroni no_home>/ assenbl y/target/repository

How to deploy GBean

Deploying a GBean onto Geronimo requires to create a specialised Geronimo plan (aka configuration). It's similar to J2EE deployment descriptors as it
also describes what it looks like and what references to other GBean it must have started before it starts up.

The plan has to conform to schema/geronimo-config.xsd (in the repo it's in modules/deployment/src/schema/geronimo-config.xsd)

Here is a part of the deployment descriptor for the gbeans already available in the binary distribution of Geronimo (it's modules/assembly/src/plan/j2ee-
server-plan.xml in the repo). It looks really scary if this is your first time seeing one. Down below we have a simple one that we'll use for your GBean.

o <gbean nanme="openej b: t ype=Cont ai ner | ndex" cl ass="org. openej b. Cont ai ner | ndex" >
<ref erences name="EJBCont ai ners">
<pattern>geroni np. server:j 2eeType=St at el essSessi onBean, *</ pattern>
<pat t er n>ger oni no. server:j 2eeType=St at ef ul Sessi onBean, *</ pattern>
<pattern>geroni no. server:j 2eeType=Enti tyBean, *</ pattern>
</references>
</ gbean>

<!-- EJB Protocol -->

<gbean name="openej b: t ype=Socket Servi ce, nane=EJB" cl ass="or g. openej b. server. Si npl eSocket Servi ce">
<attribute name="serviceC assNane" type="java.lang. String">org. openejb. server. ej bd. Ej bServer<

lattribute>

<attribute name="onl yFron type="java.net.|netAddress[]">127.0.0.1</attribute>
<ref erence name="Cont ai ner | ndex" >openej b: t ype=Cont ai ner | ndex</r ef erence>

</ gbean>

<gbean nane="openej b:t ype=Servi ceDaenon, nane=EJB" cl ass="or g. openej b. server. Servi ceDaenon" >
<attribute name="port" type="int">4201</attribute>
<attribute name="inet Address" type="java.net.|net Address">127.0.0. 1</attribute>
<ref erence name="Socket Servi ce">openej b: t ype=Socket Ser vi ce, name=EJB</ r ef er ence>

</ gbean>

<l-- JSR77 Managenent Objects -->

<gbean nane="ger oni np. server:j 2eeType=J2EEDonai n, name=ger oni no. server" cl ass="org. apache. ger oni np.
j 2ee. managenent . i npl . J2EEDonwi nl mpl "/ >

<ghbean nanme="geroni np. server:j2eeType=J2EESer ver, nanme=ger oni no" cl ass="or g. apache. geroni no. j 2ee.
managenent . i npl . J2EESer ver | npl ">

<r ef erence name="Server | nf 0" >geroni no. system rol e=Server | nfo</reference>

</ gbean>

<gbean name="ger oni no. server:j2eeType=JVM J2EESer ver =ger oni no" cl ass="or g. apache. geroni no. j 2ee.
managenent . i npl . JVM npl "/ >

<l-- JMW Remoting -->
<gbean nane="geroni np. server: rol e=JMXServi ce, nane=|l ocal host" cl ass="org. apache. geroni no. j nxrenoti ng.
JMXConnect or ">
<attribute name="URL" type="java.lang.String">service:jnx:rni://local host/jndi/rm :/JMXConnector<
lattribute>
<attribute name="applicati onConfi gName" type="java.lang. String">JMX</attribute>
</ gbean>

See also BROKEN INTERWIKI LINK to wiki:Deployment#head-5cbd584046863bc7b753e57e8681a98a87f36f0f (label = Service configuration and
deployment).

TODO: Describe what these elements mean (here or even better in xsd)

So that was scary. The next section describes the deployment plan necessary for your GBean. It's really not so bad...

Step 2: Your first deployment plan

Here's the plan of your first simple GBean - MyGBean. The gbean doesn't expose any attributes or have references to other GBean.

® <?xm version="1.0" encodi ng="UTF-8"?>

<configuration
xm ns="http://geroni no. apache. or g/ xnl / ns/ depl oynent "
confi gl d="exanpl el/ MyGBean"
>

<dependency>
<uri>nygbean.jar</uri>
</ dependency>
<gbean name="ger oni no. exanpl e: nane=My first sinple GBean" class="exanpl el. \yCBean" />
</ configurati on>

There are two ways to deploy the GBean to your server, the so-called "offline" mode for when your server isn't running, and the "online" mode, when it is.
Both are outlined below. Deploying the gbean requires to execute Geronimo Deployer. It boils down to executing an executable jar bin/deployer.jar.

Offline Deployment
When the Geronimo server isn't running, it's possible to add a GBean to it's configuration, and then start the GBean later when the server is running.

First, 'distribute' the GBean to the server :

® java -jar bin/deployer.jar distribute nmygbean-plan.xn

This will do all the necessary things to get the GBean to the server, but the GBean won't be running when the server starts.

Now, start the server :

® java -jar bin/server.jar

And when that is complete, start your GBean :

® java -jar bin/deployer.jar start exanpl el/ MyGBean
User nane: system
Passwor d: nmanager

You'll be prompted for the username and password in order to start the GBean, as shown above. Use the values shown above.
Note that unless you start the server "in the background”, you'll need another command prompt to start your GBean.

After starting, you should see the following in your server log :

® 11:43:11,652 INFO [ConfigurationManagerlnpl] Loaded Confi guration geronino.config: name="exanpl el
/ MyGBean"
11:43:11,717 INFO [Configuration] Started configuration exanpl el/ MyGBean

Online Deployment

When you already have a server running, you can distribute and start the GBean in one step :

® java -jar bin/deployer.jar deploy nygbean-plan.xm
User nane: system
Passwor d: nmanager

And you'll see a slightly different message in the log.

® 11:44: 25,340 INFO [Local ConfigStore:config-store] Installed configuration exanplel/ MyGBean in |ocation
19
11: 44: 25,432 I NFO [Configurati onManager!|npl] Loaded Configuration geroni no. config: name="exanpl el
/ MyGBean"
11: 44: 25,446 INFO [Configuration] Started configurati on exanpl el/ MyGBean

How to run GBean

Step 3: Your first GBean in action

Once the deployment completes, start the following command from the Geronimo home directory:

® java -jar bin/server.jar exanplel/ MyGBean

You should see the following output on the console:

® $ java -jar bin/server.jar exanpl el/ MyGBean
15:29: 42,376 WARN [Tool sJarHack] Could not all find java conpiler: lib\tools.jar file not found in C
\ Program Fi | es\ Jav
a\j2rel.4.2_05 or C\Program Fil es\Java
15:29: 42,386 | NFO [Daenon] Server startup begun
15:29: 43,230 INFO [Kernel] Starting boot
15:29: 43,612 I NFO [MBeanServerFactory] Created MBeanServer with ID 17cede7:ff076f 1f 39: - 8000: JLASKOWEKI :
1
15:29: 43,833 I NFO [Kernel] Booted
15:29: 43,963 I NFO [Configurati onManager|npl] Loaded Configuration geroni no. config: name="or g/ apache
/ ger oni no/ Syst enf
15:29: 44,586 I NFO [Configuration] Started configuration org/apache/ geroni no/ System
15:29: 45,048 INFO [RM RegistryService] Started RM Registry on port 1099
15:29: 45,139 INFO [ReadOnl yRepository] Repository root is file:/C:/projects/geronino/trunk/nodul es
[assenbl y/ t arget/ ger oni np- 1. 0- SNAPSHOT/ r eposi t ory/
15:29: 45,229 I NFO [ConfigurationManager!|npl] Loaded Configuration geroni no.config: name=" M/ GBean"
15:29: 45,249 INFO [Configuration] Started configurati on MyGBean
15:29: 45,249 I NFO [Daenon] Server startup conpl eted

The line Loaded Configuration geronimo.config:name="MyGBean" indicates that your first GBean is really deployed and running! Hurray!

You may also want to see some information about the gbean in the Geronimo Debug Console. Start the server with the following command:

® java -jar bin/server.jar org/apache/ geroni no/ DebugConsol e exanpl el/ MyGBean

and open up http://localhost:8080/debug-tool/index.vm?ObjectNameFilter=*%3Aname%3D%22MyGBean%22&MBeanName=geronimo.config¥%3Aname%
3D%22MyGBean%22 in your browser.

And here is how to run the gbean programatically:

Having created a GBean like this to start/stop/set values/invoke operations and GBean service use code like follows

® nane = new Obj ect Nane("test: nane=Axi sGBean");

kernel = new Kernel ("test.kernel", "test");
ker nel . boot () ;
Cl assLoader cl = getC ass().getd assLoader();

Cl assLoader myCl = new URLCl assLoader (new URL[O], cl);

GBeanMBean gbean = new GBeanMBean(Axi sGbean. get GBeanl nfo(), myd);
gbean. set Attri bute("name", "Test");

ker nel . | oadGBean(nane, gbean);

Ker nel . st art GBean(nane) ;

System out . printl n(kernel . get MBeanServer ().getAttribute(nane, "state"));
System out. println(kernel.get MBeanServer().invoke(nane, "echo", new
oject[]{"Hello"}, new String[]{String.class.getNanme()}));

ker nel . st opGBean(nane) ;
ker nel . unl oadGBean(nane)

Other questions to be answered later

If you feel you can answer some of the questions please do so!

What is GBean Meta Data?
What does the GBeanlnfo class represent?
Can | configure my GBean using a flat file?

How do | manage the attributes of my GBean remotely?

GBeans are exposed as MBeans via the JMX kernel. Hence, it is possible to control/query them as we would have control A "standardA," MBeans.

http://localhost:8080/debug-tool/index.vm?ObjectNameFilter=*%3Aname%3D%22MyGBean%22&MBeanName=geronimo.config%3Aname%3D%22MyGBean%22
http://localhost:8080/debug-tool/index.vm?ObjectNameFilter=*%3Aname%3D%22MyGBean%22&MBeanName=geronimo.config%3Aname%3D%22MyGBean%22

For instance, to manage a given MBean remotely, it is possible to leverage the Java Management Extensions Remote API(JSR 160), which is supported
by Geronimo.

More accurately, two services need to be up and running in order to enable the RMI Connector defined by JSR 160 on the server-side:
® org.apache.geronimo.system.RMIRegistryService: starts a RMI registry on the specified port. This service is part of the "system" plan, in other
words it is always started; and
® org.apache.geronimo.jmxremoting.JMXConnector: it creates a RMI Connector server and exports it to the RMI registry embedded in its URL (see
JSR 160 for more details about the format of the URL). You can have a look to the j2ee-server plan for more details on its GBean definition.

If the two above services are running, then the following snippet will get you an MBeanServerConnection:

Map environment = new HashMap();
String[] credentials = new String[]{<usernane>, <password>};
envi ronnent . put (JMXConnect or. CREDENTI ALS, credenti al s);

JMXSer vi ceURL address = new JMXServi ceURL(<URI defined by the JMXConnector service>);

JMXConnect or jmxConnector = JMXConnect or Factory. connect (address, environnent);
MBeanSer ver Connecti on nbServer Connecti on = j nkxConnect or. get MBeanSer ver Connecti on();

Note: username and password must be defined by the org.apache.geronimo.security.jaas.ConfigurationEntry having the name defined by the applicationCo
nfigName attribute of the org.apache.geronimo.jmxremoting.JMXConnector service.

Having said that, if you do not want to write code, you can also use a JMX console supporting JSR 160.

How do I call methods on a GBean deployed in the server from a J2EE App?

First get a handle to the kernel by calling KernelRegistry.getSingleKernel() and then use the invoke methods in the Kernel interface. eg:

bj ect Nane obj = new Cbj ect Nane(" ger oni no. exanpl e: name=EchoServer");
Kernel kernel = Kernel Regi stry. get Si ngl eKernel ();
String outputs=(String)kernel.invoke(obj,"hello");

where hello() is a method on the GBean. This will work provided that the GBean is running in the same server instance where the J2EE application is
deployed.

Article about GBeans

Geronimo GBeans Architecture

#
#
#
#
http://wiki.apache.org/geronimo/GBeansArticle1

	GBeans

