
Action Configuration
The action mappings are the basic "unit-of-work" in the framework. Essentially, the action maps an identifier to a handler class. When a request matches
the action's name, the framework uses the mapping to determine how to process the request.

Action Mappings
Action Names

Action Names With Slashes
Action Names with Dots and Dashes
Allowed action names

Action Methods
Wildcard Method
Dynamic Method Invocation

Strict DMI
Strict Method Invocation

ActionSupport Default
Post-Back Default
Action Default

Wildcard Default
Next: Wildcard Mappings

Action Mappings

The action mapping can specify a set of result types, a set of exception handlers, and an interceptor stack. Only the attribute is required. The other name
attributes can also be provided at package scope.

A Logon Action

<action name="Logon" class="tutorial.Logon">
 <result type="redirectAction">Menu</result>
 <result name="input">/Logon.jsp</result>
</action>

When using the action mapping can be configured with annotations:Convention Plugin

A Logon Action with annotations

package tutorial

@Action("Logon") // actually that is not necessary as it is added by convention
@Results(
 @Result(type="redirectAction", location="Menu"),
 @Result(name="input", location="/Logon.jsp")
)
public class Logon {

Action Names

In a web application, the attribute is matched as part of the location requested by a browser (or other HTTP client). The framework will drop the host name
and application name and the extension and match what's in the middle: the action name. So, a request for http://www.planetstruts.org

 will map to the action./struts2-mailreader/Welcome.action Welcome

Within an application a link to an action is usually generated by a Struts Tag. The tag can specify the action by name, and the framework will render the
default extension and anything else that is needed. Forms may also submit directly to a Struts Action name (rather than a "raw" URI).

A Hello Form

<s:form action="Hello">
 <s:textfield label="Please enter your name" name="name"/>
 <s:submit/>
</s:form>

Action Names With Slashes

https://cwiki.apache.org/confluence/display/WW/Convention+Plugin
http://www.planetstruts.org/struts2-mailreader/Welcome.action
http://www.planetstruts.org/struts2-mailreader/Welcome.action

If your action names have slashes in them (for example, <action name="admin/home" class="tutorial.Admin"/>) you need to specifically
allow slashes in your action names via a constant in the struts.xml file by specifying <constant name="struts.enable.
SlashesInActionNames" value="true"/>. See JIRA Issue WW-1383 for discussion as there are side effects to setting this property to true.

Action Names with Dots and Dashes

Although action naming is pretty flexible, one should pay attention when using dots (eg. create.user) and/or dashes (eg. my-action). While the dot notation
has no known side effects at this time, the dash notation will cause problems with the generated JavaScript for certain tags and themes. Use with caution,
and always try to use camelcase action names (eg. createUser) or underscores (eg. my_action).

Allowed action names

DefaultActionMapper is using pre-defined RegEx to check if action name matches allowed names. The default RegEx is defined as follow: [a-zA-Z0-
 - if at some point this doesn't match your action naming schema you can define your own RegEx and override the default using constant 9._!/\-]*

named , e.g.:struts.allowed.action.names

<struts>
 <constant name="struts.allowed.action.names" value="[a-z{}]"*/>
 ...
</struts>

NOTE: Please be aware that action names not matching the RegEx will rise an exception.

Action Methods

The default entry method to the handler class is defined by the Action interface.

Action interface

public interface Action {
 public String execute() throws Exception;
}

 Implementing the Action interface is optional. If Action is not implemented, the framework will use reflection to look for an method.execute

Sometimes, developers like to create more than one entry point to an Action. For example, in the case of a data-access Action, a developer might want
separate entry-points for , , , and . A different entry point can be specified by the attribute.create retrieve update delete method

<action name="delete" class="example.CrudAction" method="delete">
 ...

 If there is no method and no other method specified in the configuration the framework will throw an exception.execute

Convention Plugin allows that by annotating methods:

Annotated action method

@Action("crud")
public class CrudAction {
 @Action("delete")
 public String delete() {
 ...

Wildcard Method

Many times, a set of action mappings will share a common pattern. For example, all your actions might start with the word "edit", and call the edit edit
method on the Action class. The actions might use the same pattern, but call the method instead.delete delete

Rather than code a separate mapping for each action class that uses this pattern, you can write it once as a wildcard mapping.

https://issues.apache.org/jira/browse/WW-1383
https://cwiki.apache.org/confluence/display/WW/Convention+Plugin

<action name="*Crud" class="example.Crud" method="{1}">
 ...

Here, a reference to "editCrud" will call the method on an instance of the Crud Action class. Likewise, a reference to "deleteCrud" will call the edit delete
method instead.

Another common approach is to postfix the method name and set it off with an exclamation point (aka "bang"), underscore, or other special character.

"action=Crud_input"
"action=Crud_delete"

To use a postfix wildcard, just move the asterisk and add an underscore.

<action name="Crud_*" class="example.Crud" method="{1}">

From the framework's perspective, a wildcard mapping creates a new "virtual" mapping with all the same attributes as a conventional, static mapping. As a
result, you can use the expanded wildcard name as the name of validation, type conversion, and message resource files, just as if it were an Action name
(which it is!).

Crud_input-validation.xml
Crud_delete-conversion.xml

Dynamic Method Invocation

There's a feature embedded in Struts 2 that lets the "!" (bang) character invoke a method other than . It is called "Dynamic Method Invocation" execute
aka DMI.

DMI will use the string following a "!" character in an action name as the name of a method to invoke (instead of). A reference to "execute Category!
", says to use the "Category" action mapping, but call the method instead.create.action create

Another way to use DMI is to provide HTTP parameters prefixed with " ". For example in the URL it could be "method: Category.action?method:
", the parameter value is ignored. In POST-Requests that can be used e.g. with a hidden parameter (create=foo <s:hidden name="method:

) or along with a button ().create" value="foo" /> <s:submit method="create" />

For Struts 2, we added a switch to disable DMI for two reasons. First, DMI can cause security issues if POJO actions are used. Second, DMI overlaps with
the Wildcard Method feature that we brought over from Struts 1 (and from Cocoon before that). If you have security concerns, or would like to use the "!"
character with Wildcard Method actions, then set to in the application configuration.struts.enable.DynamicMethodInvocation FALSE

The framework does support DMI, but there are problems with way DMI is implemented. Essentially, the code scans the action name for a "!" character,
and finding one, tricks the framework into invoking the other method instead of . The other method is invoked, but it uses the same configuration execute
as the method, including validations. The framework "believes" it is invoking the action with the method.execute Category execute

The Wildcard Method feature is implemented differently. When a Wildcard Method action is invoked, the framework acts as if the matching action had
been hardcoded in the configuration. The framework "believes" it's executing the action and "knows" it is executing the Category!create create
method of the corresponding Action class. Accordingly, we can add for a Wildcard Method action mapping its own validations, message resources, and
type converters, just like a conventional action mapping. For this reason, the is preferred.Wildcard Method

Strict DMI

In Struts 2.3, an option was added to restrict the methods that DMI can invoke. First, set the attribute on your strict-method-invocation="true" <p
 element. This tells Struts to reject any method that is not explicitly allowed via either the attribute (including wildcards) or the ackage> method <allowed-

 tag. Then specify as a comma-separated list of method names in your . (If you specify a attribute for methods> <allowed-methods> <action> method
your action, you do not need to list it in .)<allowed-methods>

Note that you can specify even without . This restricts access only for the specific actions that <allowed-methods> strict-method-invocation
have .<allowed-methods>

If Wildcard Method mapping uses a "!" in the action name, the Wildcard Method will overlap with another flexible approach to mapping, Dynamic
. To use action names that include the "!" character, set to in the Method Invocation struts.enable.DynamicMethodInvocation FALSE

application configuration.

Example struts.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
 "http://struts.apache.org/dtds/struts-2.3.dtd">
<struts>

 <constant name="struts.enable.DynamicMethodInvocation" value="true"/>

 <package name="default" extends="struts-default" strict-method-invocation="true">

 <action name="index" class="org.apache.struts2.examples.actions.Index">
 <result name="success" type="redirectAction">hello</result>
 </action>

 <action name="hello" class="org.apache.struts2.examples.actions.HelloAction">
 <result name="success">/WEB-INF/content/hello.jsp</result>
 <result name="redisplay" type="redirectAction">hello</result>
 <allowed-methods>add</allowed-methods>
 </action>

 </package>
</struts>

Strict Method Invocation

In Struts 2.5 the Strict DMI was extended and it's called aka SMI. You can imagine that the DMI is a "border police", where SMI Strict Method Invocation
is a "tax police" and keeps eye on internals. With this version, SMI is enabled by default (attribute is set to by strict-method-invocation true
default in package), you have option to disable it per package - there is no global switch to disable SMI for the whole application. To struts-default
gain advantage of new configuration option please use the latest DTD definition:

Struts 2.5 DTD

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.5//EN"
 "http://struts.apache.org/dtds/struts-2.5.dtd">
<struts>
...
</struts>

SMI works in the following way:

<allowed-methods> / is defined per action - SMI works without switching it on but just for those actions (plus adding @AllowedMethods <glo
)bal-allowed-methods/>

SMI is enabled but no / are defined - SMI works but only with <allowed-methods> @AllowedMethods <global-allowed-methods/>

SMI is disabled - call to any action method is allowed that matches the default RegEx - ([A-Za-z0-9_$]*)

You can redefine the default RegEx by using a constant as follow <constant name="struts.strictMethodInvocation.methodRegex" value="
([a-zA-Z]*)"/>

You can configure SMI per using tag or via annotation plus using per <action/> <allowed-methods/> @AllowedMethod <package/> <global-

, see the examples below:allowed-methods/>

When using wildcard mapping in actions' definitions SMI works in two ways:

SMI is disabled - any wildcard will be substituted with the default RegEx, ie.: <action name="Person*" method="perform*">
will be translated into allowedMethod = "regex:perform([A-Za-z0-9_$]*)".
SMI is enabled - no wildcard substitution will happen, you must strictly define which methods can be accessed by annotations or <allo

 tag.wed-method/>

SMI via struts.xml

<package ...>
 ...
 <global-allowed-methods>execute,input,back,cancel,browse</global-allowed-methods>
 ...

 <action name="Bar">
 <allowed-methods>foo,bar</allowed-methods>
 </action>

 ...
</package>

SMI via annotation on action class level

@AllowedMethods("end")
public class ClassLevelAllowedMethodsAction {
 public String execute() {
 return ...
 }
}

SMI via annotation on package level (in package-info.java)

@org.apache.struts2.convention.annotation.AllowedMethods({"home", "start"})
package org.apache.struts2.convention.actions.allowedmethods;

Allowed methods can be defined as:

literals ie. in xml: or in annotation:execute,cancel {" ", " "}execute cancel
patterns when using with wildcard mapping, i.e <action ... method="do{2}"/>
RegExs using prefix, ie: regex: <global-allowed-methods>execute,input,cancel,regex:user([A-Z]*)</global-allowed-
methods>

ActionSupport Default

If the class attribute in an action mapping is left blank, the class is used as a default.com.opensymphony.xwork2.ActionSupport

<action name="Hello">
 // ...
</action>

 The ActionSupport class has an method that returns "success" and an method that returns "input".execute input
 To specify a different class as the default Action class, set the package attribute.default-class-ref

 For more about using wildcards, see .Wildcard Mappings

Post-Back Default

A good practice is to link to actions rather than pages. Linking to actions encapsulates which server page renders, and ensures that an Action class can
fire before a page renders.

Another common workflow stategy is to first render a page using an alternate method, like and then have it submit back to the default input execute
method.

Please be aware when using your own that the logic to set allowed methods is defined in built-in providers - Configurationprovider XmlCo
 and - and you must replicate such logic in your code as by default only nfigurationProvider PackageBasedActionConfigBuilder exe

 method is allowed, even when SMI is disabled.cute

https://cwiki.apache.org/confluence/display/WW/Wildcard+Mappings

Using these two strategies together creates an opportunity to use a "post-back" form that doesn't specify an action. The form simply submits back to the
action that created it.

Posting Back

<s:form>
 <s:textfield label="Please enter your name" name="name"/>
 <s:submit/>
</s:form>

Action Default

Usually, if an action is requested, and the framework can't map the request to an action name, the result will be the usual "404 - Page not found" error. But,
if you would prefer that an omnibus action handle any unmatched requests, you can specify a default action. If no other action matches, the default action
is used instead.

<package name="Hello" extends="action-default">

 <default-action-ref name="UnderConstruction"/>

 <action name="UnderConstruction">
 <result>/UnderConstruction.jsp</result>
 </action>

 ...

There are no special requirements for the default action. Each package can have its own default action, but there should only be one default action per
namespace.

Wildcard Default

Using wildcards is another approach to default actions. A wildcard action at the end of the configuration can be used to catch unmatched references.

<action name="*">
 <result>/{1}.jsp</result>
</action>

When a new action is needed, just add a stub page.

 It's important to put a "catchall" wildcard mapping like this at the end of your configuration so it won't attempt to map every request!

Next: Wildcard Mappings

One to a Namespace

The default action features should be set up so that there is only one default action per namespace. If you have multiple packages declaring a
default action with the same namespace, there is no guarantee which action will be the default.

https://cwiki.apache.org/confluence/display/WW/Wildcard+Mappings

	Action Configuration

