
KIP-1: Parquet storage
Author: Yiming Xu, Mingming Ge

1. Background: Why Kylin on Parquet

Currently, Kylin uses Apache HBase as the storage for OLAP cubes.

HBase is very fast, while it also has some drawbacks:

HBase is not real columnar storage;
HBase has no secondary index; Rowkey is the only index;
HBase has no encoding, Kylin has to do the encoding by itself;
HBase does not fit for cloud deployment and auto-scaling;
HBase has different API versions and has compatible issues (e.g, 0.98, 1.0, 1.1, 2.0);
HBase has different vendor releases and has compatible issues (e.g, Cloudera's is not compatible with others);

This proposal is to use Apache Parquet + Spark to replace HBase:

Parquet is an open-source columnar file format;
Parquet is more cloud-friendly, can work with most FS including HDFS, S3, Azure Blob store, Ali OSS, etc;
Parquet can integrate very well with Hadoop, Hive, Spark, Impala, and others;
Support custom index;
It is mature and stable;

2. Parquet file layouts on HDFS

Storage layout is important for I/O optimizations
Do as much as possible pruning before reading the file

Filter by folder, file name, etc
Each Cuboid uses a dedicated folder
Cube

Segment A
Cuboid-1111

part-0000-XXX.snappy.parquet
part-0001-XXX.snappy.parquet

Cuboid-1001
part-0000-XXX.snappy.parquet
part-0001-XXX.snappy.parquet

Segment B
Cuboid-1111

part-0000-XXX.snappy.parquet
...

Advantages

Filter by folder is good enough
Can dynamically add/remove cuboid without impact others ()ShaofengShi: Currently Kylin won't dynamically add/remove cuboid

Disadvantage

Many folders when the cube has many cuboids (ShaofengShi: I think this will bring too many small files, it will increase the burden to
)HDFS, how can we overcome it?

3. Dimension/measure layouts in Parquet

Dimension and measures layouts in parquet files
If there is a dimension combination of [d1, d2, d3] and measures of [m1, m2]then a parquet file like this will be generated:
Columns 1, 2, and 3 correspond to Dimension d1, d2, and d3, respectively
Column 110000 and 110001 respectively correspond to Measure m1, m2
(ShaofengShi: Is "1", "110000" the column name in parquet? or the column name should be the original column name?)
(ShaofengShi: How does the "110000" number come?)

Parquet file schema:
 1: OPTIONAL INT64 R:0 D:1
 2: REQUIRED DOUBLE R:0 D:0
 3: OPTIONAL INT64 R:0 D:1
 110000: OPTIONAL INT64 R:0 D:1
 110001: OPTIONAL INT64 R:0 D:1

"REQUIRED" and "OPTIONAL" correspond to "nullable" in database system.
Parquet data type includes The data with string type in hive will be BOOLEAN, INT32, INT64, INT96, FLOAT, DOUBLE and BYTE_ARRAY.
stored as BYTE_ARRAY in parquet.

How to deal with the order of dimension and measure

In a parquet file, the order of the columns is always dimension first and measure last
There is no order between dimensions and between measures

Parquet file split

parquet.block.size default 128mb
(ShaofengShi: How many row groups in a parquet file?)

4. Data types mapping in Parquet

How do you encode the data into a parquet?
Kylin no longer needs to encode columns
Parquet will encode needed columns

All data types can be accurately mapped to Parquet
Support with ParquetWriteSupport

StructType ArrayType MapType
Direct mapping transformation

Type Spark Parquet

Numeric types ByteType INT32

Numeric types ShortType INT32

Numeric types IntegerType INT32

Numeric types LongType INT64

Numeric types FloatType FLOAT

Numeric types DoubleType DOUBLE

Numeric types DecimalType INT32INT64BinaryTypeFIXED_LEN_BYTE_ARRAY

String type StringType BYTE_ARRAY

Binary type BinaryType BYTE_ARRAY

Boolean type BooleanType BOOLEAN

Datetime type TimestampType INT96

Datetime type DateType INT32

How computed columns are stored
Bitmap: BYTE_ARRAY
TopN: BYTE_ARRAY

5. How to build Cube into Parquet

Reduced build steps
From ten-twenty steps to only two steps

Build Engine
Simple and clear architecture
Spark as the only build engine
All builds are done via spark
Adaptively adjust spark parameters
Dictionary of dimensions no longer needed

Supported measures
Sum
Count
Min
Max
TopN
Bitmap
HyperLogLog

Cube into parquet
*

(ShaofengShi: this part need detailed info)

6. How to query with Parquet

1.
2.
3.
4.
5.
6.

Query Engine: Sparder
Use spark as a calculation tool
Distributed query engineavoid single-point-of-failure
Unified calculation engine for building and querying
There is a substantial increase in query performance
Can benefit from spark new features and ecology

The basic process of Sparder query
Parser => Sql to AST tree
Validation => Further verify the validity of SQL based on metadata
Optimizer => Generate LogicPlan according to optimization rules
Kylin's Adaptation => Convert AST's nodes to rel nodes(Various classes ending with Rel, such as FilterRel)
Spark Plan => relnode to Spark plan
Query Execution => Read cube data based on the generated spark plan

What are the optimizations of Kylin reading parquet data
Segment Pruning
Shard by
Parquet page index
Project Pushdown
Predicate Pushdown

7. Performance

 Kyligence provides dataset tool for SSB and TPC-H which contains test SQL case, the repositories are as follows:

https://github.com/Kyligence/ssb-kylin
https://github.com/Kyligence/kylin-tpch

 Environment
4 nodes hadoop cluster
Yarn queue has 400G memory and 128 cpu cores

Build(Over SSB)

https://github.com/Kyligence/ssb-kylin
https://github.com/Kyligence/kylin-tpch

Query(Over SSB and TPC-H)

8. Next step

	KIP-1: Parquet storage

