KIP-1: Parquet storage

Author: Yiming Xu, Mingming Ge

1. Background: Why Kylin on Parquet

Currently, Kylin uses Apache HBase as the storage for OLAP cubes.

HBase is very fast, while it also has some drawbacks:

HBase is not real columnar storage;

HBase has no secondary index; Rowkey is the only index;

HBase has no encoding, Kylin has to do the encoding by itself;

HBase does not fit for cloud deployment and auto-scaling;

HBase has different API versions and has compatible issues (e.g, 0.98, 1.0, 1.1, 2.0);

HBase has different vendor releases and has compatible issues (e.g, Cloudera's is not compatible with others);

This proposal is to use Apache Parquet + Spark to replace HBase:

Parquet is an open-source columnar file format;

Parquet is more cloud-friendly, can work with most FS including HDFS, S3, Azure Blob store, Ali OSS, etc;
Parquet can integrate very well with Hadoop, Hive, Spark, Impala, and others;

Support custom index;

It is mature and stable;

2. Parquet file layouts on HDFS

Storage layout is important for 1/O optimizations
Do as much as possible pruning before reading the file

o Filter by folder, file name, etc
Each Cuboid uses a dedicated folder
Cube

© Segment A
" Cuboid-1111
® part-0000-XXX.snappy.parquet
® part-0001-XXX.snappy.parquet
" Cuboid-1001
® part-0000-XXX.snappy.parquet
® part-0001-XXX.snappy.parquet
© Segment B
" Cuboid-1111
® part-0000-XXX.snappy.parquet
L]

Advantages

O Filter by folder is good enough

o Can dynamically add/remove cuboid without impact others (ShaofengShi: Currently Kylin won't dynamically add/remove cuboid)

Disadvantage

© Many folders when the cube has many cuboids (ShaofengShi: | think this will bring too many small files, it will increase the burden to

HDFS, how can we overcome it?)

3. Dimension/measure layouts in Parquet

Dimension and measures layouts in parquet files

If there is a dimension combination of [d1, d2, d3] and measures of [m1, m2]then a parquet file like this will be generated:

Columns 1, 2, and 3 correspond to Dimension d1, d2, and d3, respectively
Column 110000 and 110001 respectively correspond to Measure m1, m2

(ShaofengShi: Is "1", "110000" the column name in parquet? or the column name should be the original column name?)

(ShaofengShi: How does the "110000" number come?)

Parquet file schema:

1 OPTIONAL INT64 RO D: 1
2: REQUI RED DOUBLE R0 D: 0
3: OPTIONAL INT64 RO D: 1
110000: OPTIONAL INT64 RO D1
110001: OPTIONAL INT64 RO D1

® Parquet data type includes BOOLEAN, INT32, INT64, INT96, FLOAT, DOUBLE and BYTE_ARRAY. The data with string type in hive will be

"REQUIRED" and "OPTIONAL" correspond to "nullable" in database system.

stored as BYTE_ARRAY in parquet.

® How to deal with the order of dimension and measure

© In a parquet file, the order of the columns is always dimension first and measure last
© There is no order between dimensions and between measures
® Parquet file split

© parquet.block.size default 128mb
© (ShaofengShi: How many row groups in a parquet file?)

4. Data types mapping in Parquet

® How do you encode the data into a parquet?
o Kylin no longer needs to encode columns
© Parquet will encode needed columns
® All data types can be accurately mapped to Parquet
O Support with ParquetWriteSupport
" StructType ArrayType MapType
© Direct mapping transformation

Type Spark Parquet
Numeric types = ByteType INT32
Numeric types = ShortType INT32
Numeric types ' IntegerType INT32
Numeric types = LongType INT64
Numeric types = FloatType FLOAT
Numeric types = DoubleType DOUBLE
Numeric types = DecimalType INT32INT64BinaryTypeFIXED_LEN_BYTE_ARRAY
String type StringType BYTE_ARRAY
Binary type BinaryType BYTE_ARRAY

Boolean type = BooleanType BOOLEAN
Datetime type = TimestampType | INT96

Datetime type = DateType INT32

® How computed columns are stored
© Bitmap: BYTE_ARRAY
O TopN: BYTE_ARRAY

5. How to build Cube into Parquet

® Reduced build steps
© From ten-twenty steps to only two steps
® Build Engine
© Simple and clear architecture
© Spark as the only build engine
© All builds are done via spark
O Adaptively adjust spark parameters
© Dictionary of dimensions no longer needed
® Supported measures
© Sum
© Count
o Min
© Max
© TopN
o Bitmap
© HyperLogLog
® Cube into parquet
*

(ShaofengShi: this part need detailed info)

6. How to query with Parquet

® Query Engine: Sparder
© Use spark as a calculation tool
© Distributed query engineavoid single-point-of-failure
© Unified calculation engine for building and querying
© There is a substantial increase in query performance
© Can benefit from spark new features and ecology

® The basic process of Sparder query
1. Parser => Sql to AST tree
2. Validation => Further verify the validity of SQL based on metadata
. Optimizer => Generate LogicPlan according to optimization rules
. Kylin's Adaptation => Convert AST's nodes to rel nodes(Various classes ending with Rel, such as FilterRel)
. Spark Plan => relnode to Spark plan
. Query Execution => Read cube data based on the generated spark plan

oOoUlhA W

® What are the optimizations of Kylin reading parquet data
© Segment Pruning

Shard by

Parquet page index

Project Pushdown

Predicate Pushdown

0 00O

7. Performance
Kyligence provides dataset tool for SSB and TPC-H which contains test SQL case, the repositories are as follows:

® https://github.com/Kyligence/ssb-kylin
® https://github.com/Kyligence/kylin-tpch

® Environment

O 4 nodes hadoop cluster

© Yarn queue has 400G memory and 128 cpu cores
® Build(Over SSB)

https://github.com/Kyligence/ssb-kylin
https://github.com/Kyligence/kylin-tpch

Building Duration Over SSB(Min)

@ HBase W Parquet

80

60

40

20

60 million rows 90 million rows

Result Size Over SSB(GB)

W HBase WM Parquet
30

20

60 million rows 90 million rows

® Query(Over SSB and TPC-H)

Query Response Over SSB(s)

B HBase [Parquet

05

Query Response Over TPC-H(s)
W HBase W Parquet

30

26.72

20

0.60.76

1071 3057

8. Next step

	KIP-1: Parquet storage

