LucyBookClub
Lucy Book Club

® Lucy Book Club

© Schedule and Location

© Agenda

© Where To Get Information

© Upcoming Meetings
© Community Notes

® Tuesday March 11, 18:00 PDT:
® Tuesday March 4, 18:00 PDT:

Tuesday February 25, 18:00 PDT:
Tuesday February 11, 18:00 PDT:
Tuesday February 4, 18:00 PDT:
Tuesday January 28, 18:00 PDT:
Tuesday January 21, 18:00 PDT:
Tuesday January 14, 18:00 PDT:
Tuesday June 18, 7:00 pm PDT:
Tuesday June 11, 7:00 pm PDT:
Tuesday June 4, 7:00 pm PDT:
Tuesday May 21, 7:00 pm PDT:
Tuesday May 14, 7:00 pm PDT:
Tuesday April 30, 7:00 pm PDT:
Tuesday April 23, 7:00 pm PDT (Postponed from April 16th):
Tuesday April 9, 7:00 pm PDT:
Tuesday April 2, 7:00 pm PDT:
Tuesday March 19, 7:00 pm PDT:
Tuesday March 5, 7:00 pm PDT:
Tuesday February 12, 7:00 pm PDT:
Tuesday February 5, 7:00 pm PDT:
Tuesday January 29, 7:00 pm PDT:
Tuesday January 22, 7:00 pm PDT:
Tuesday January 15, 7:00 pm PDT:
Tuesday January 8, 7:00 pm PDT:
Thursday January 3, 7:00 pm PDT:
Tuesday December 18, 7:00 pm PDT:
Tuesday December 11, 7:00 pm PDT:
Tuesday December 4, 7:00 pm PDT:
Tuesday November 27, 7:00 pm PDT:
Tuesday November 13, 7:00 pm PDT:
Tuesday November 6, 7:00 pm PDT:
Tuesday October 30, 7:00 pm PDT:
Tuesday October 23, 7:00 pm PDT:
Tuesday October 16, 7:00 pm PDT:
Tuesday October 9, 7:00 pm PDT:
Tuesday October 2, 7:00 pm PDT:
Tuesday September 25, 7:00 pm PDT:
Tuesday September 18, 7:00 pm PDT:
Tuesday September 11, 7:00 pm PDT:
Tuesday September 04, 7:00 pm PDT:
Tuesday August 28, 7:00 pm PDT:
Tuesday August 21, 7:00 pm PDT:
Tuesday August 14, 7:00 pm PDT:
Tuesday August 7, 7:00 pm PDT:
Tuesday July 31, 7:00 pm PDT:
Tuesday July 17 Meeting

" Thursday July 12 Meeting
O Possible Future Books
© Past Books
© Hacks 'n Koans

Schedule and Location

The Lucy Book Club will be taking a hiatus through ApacheCon Denver.

We ordinarily meet weekly on Tuesday evenings at 18:00 PDT in a Google Hangout.
Log into Google Plus, then join the conversation.

We used to meet at 19:00 PDT, but we have changed the schedule to be more convenient for our East Coast participants.

Agenda

The Lucy Book Club is open to anyone who is interested in search, parsing, compilers, and Lucy in general.

http://events.linuxfoundation.org/events/apachecon-north-america/
https://plus.google.com/hangouts/_/event/ctqeglpqceshlfpsl9gv2pe2efk

We are currently reading through the book Pro Git by Scott Chacon. The entire book is available online as well as in traditional dead-tree format.

Suggested additional reading for the intrepid: the gitglossary(7) man page, Build git - learn git

Where To Get Information
irc.freenode.net/#lucy_dev

dev@lucy.apache.org

Upcoming Meetings

None scheduled.

Community Notes

Below are an excerpt of notes from previous meetings and or anything of interest related to the meetings.

Tuesday March 11, 18:00 PDT:
Pro Git Chapter 9: Git Internals
Discussion questions:

. What is a content-addressable file system?

. Aftergit init,the.git directory contains 8 entries. What are they and what purpose does each serve?
What does the file . gi t / HEAD contain when the repository is in a "detached HEAD" state?

. In Git jargon, what's the difference between "plumbing" and "porcelain"?

Whatdogit wite-treeandgit read-tree do?

. Describe a recipe for performing a sequence of commits using only plumbing commands.

. What's the difference between how a lightweight tag and an annotated tag are represented in the Git file system?
. How can you tag a blob?

. Why use updat e-r ef and synbol i c-ref rather than write content directly?

10. What is the file format of every Git object?

11. What are the valid file modes for a blob?

12. What information does each entry in a tree contain?

13. Where are remote branches stored?

14. Describe the circumstances under which Git may remove unreferenced objects.

15. Why keep the most recent revision as a complete blob in a pack file, rather than the first revision?

©CONDUTAWNE

Tuesday March 4, 18:00 PDT:

Pro Git Chapter 7: Customizing Git
Discussion questions:

. What are some settings you might want to customize viagit config --gl obal ?

. How can you change the default Git commit message?

Why not set col or. ui to al ways?

. What two whitespace checks are enabled by default?

How do you disable non-fast-forward pushes for the entire repo? How about only for the mast er branch?
. What hole does the server setting r eci eve. denyDel et es plug?

. Why might you turn on r ecei ve. f sckCbj ect s?

. How can you persuade Git to show you a diff between different versions of an MS Word file?

. Conceptually, what might a diff of JPEG file show?

10. How do you manage format options for gi t ar chi ve?

11. How do you install a hook?

12. What are some situations where you'd use a client-side hook? How about a server-side hook?

©CENOUAWNPR

13. How would you set up Git to run code files through a prettifier before committing using attributes and a filter? Wouldn't it be nice if it just warned

instead of silently modifying your files? How could you set up that behavior using a pre-commit hook?
14. How can you insert auto-generated content into a commit message?
15. What's the downside of using client-side hooks to enforce policy? Are server-side hooks better?
16. What mechanism do hooks generally use to abort the process that invoked them?
17. What server-side hook would you use for a commit mailer?

Tuesday February 25, 18:00 PDT:
Pro Git Chapter 6: Git Tools

Discussion questions:

http://git-scm.com/book
http://kushagragour.in/blog/2014/01/build-git-learn-git/
mailto:dev@lucy.apache.org
http://git-scm.com/book/en/Git-Internals
http://git-scm.com/book/en/Customizing-Git
http://git-scm.com/book/en/Git-Tools

©ONDUAWNRE

. What's a short SHA?

. What's more likely, a SHA collision, or having every single member of your programming team killed by wolves in separate incidents tonight?
. What tool will tell you the SHA that a commit specifier aliases?

. What's the difference between HEAD~2 and HEAD"2? What does HEAD~3"2 mean?

How can you check what you're about to push?

. What's the difference between ... ingit logandgit diff?

. If you have staged changes, what is the effect of gi t st ash followed by gi t stash apply?

. Scott Chacon says that the material in this chapter is stuff we won't use every day. However, git commit --anend is covered. Is Scott nuts?
. Describe the process of splitting an existing commit during interactive rebasing.

. Which is easiertouse, git add -i orgit add --patch?

. What two commands can be used to simulate gi t stash pop?

. Describe a use case forgit stash branch BRANCHNAME.

. During an interactive rebase, what do the following commands do? pick, reword, edit, squash, fixup, exec.

. How would you break a directory within a repo out into its own repo, complete with history? If that directory has moved around, is it possible to

preserve its history?

. How would you use gi t bi sect to find the revision where a bug originated using a script? How about interactively?
. Why are submodules referenced using SHAs rather than branch names?

Tuesday February 11, 18:00 PDT:

Pro Git Chapter 5: Distributed Git

Discussion questions:

©CENOUAWNPR

. What error message does Git give you when you try to push something not up-to-date?
. Describe the diffence between the "Integration Manager Workflow" and the "Director and Lieutenants Workflow".
. What's the difference between gi t appl y and the Unix utility pat ch?

Does git appl y commit?

. Who is the Committer after gi t amis used to apply patch sequences generated with gi t f or mat - pat ch?

Why is it necessary to rebase the devel op branch on top of mast er periodically?

. What are the four branches used by the Git project? How often are they rebased?

. How is cherry-picking related to rebasing?

. Whatis the - - not flagtogit |o0g?

. Why would you use the triple dot to git log? Why is order important?

. When would you use git merge --no-comit?

. What is the recommended format for commit messages, per the docs forgi t commi t ?

. What is the default format of the output generated by gi t descri be?

. What are some typical guidelines for submitting patches?

. Why do many projects insist that you rebase any pull requests, or possibly squash everything in the branch down to one commit?

Tuesday February 4, 18:00 PDT:

Pro Git Chapter 4: Git on the Server

Discussion questions:

Read:

Ski p:

Skim

4.
4.

bl o o ol o

el

Gt on the Server

1 The Protocols

2 Getting Gt on a Server

3 Cenerating Your SSH Public Key
4 Setting Up the Server

5 Public Access

6 GtWwb

7 Gtosis

8 Gtolite

9 Gt Daenon

10 Hosted G t
11 Sunmary

Discussion questions:

1.

Technically, there is no need for a master repository with distributed version control a la Git — collaborators can just share code directly. Why
doesn't anybody do things that way? 2. Why are repositories set up to be accessed remotely generally "bare" repositories? 3. What four protocols
does Git support for remote access to a repo? 4. For a local repo, what changes when you specify the fi | e: // protocol to gi t cl one instead
of just supplying a path? 5. Why not use the gi t protocol for write access? 6. What file needs to be present in a repo in order to enable access

http://git-scm.com/book/en/Distributed-Git
http://git-scm.com/book/en/Git-on-the-Server

via the gi t protocol? Bonus question: Why do you suppose that Git's authors imposed this requirement? 7. Which is the "dumb protocol”, which
is the "smart protocol”, and what distinguishes them from each other? 8. If you have no collaborators, is there any downside to using the SSH
protocol? 9. What naming convention is traditional for bare repositories? 10. When setting up a server for SSH access and the gi t user, where
do the SSH public keys go? 11. Why is interacting with a Git repo on an NFS mount slow? 12. What "hook" do you have to set up in order to
facilitate HTTP access to a repo? What steps are necessary to enable it? What does it do? 13. If you have a Mac with Git installed, try running gi
t instaweb --httpd=webrick on alocal repo. What happens if you edit the file . gi t/ descri pti on? (When you're done, stop the server
by running gi t i nstaweb --httpd=webbrick --stop.)14. Check out the drop-down list of search options in the GitWeb interface. What
are the options? Bonus question: what do they do? 15. What are the pros and cons of using a Git hosting service like GitHub instead of running
your own Git server?

Tuesday January 28, 18:00 PDT:

Pro Git Chapter 3: Git Branching

Discussion questions:

©CONOUAWNPRE

. What is the content of a Git commit object?

. What is a branch in Git?

. What happens to the branch you're on when you commit? Does . gi t / HEAD change?
. What's the difference between git branch fooandgit checkout -b foo?

What are the different kinds of refs stored in . gi t/ ref s?

. What happens when you performa gi t checkout ?

. How does Git handle collisions between tracked and untracked files during checkout ?

. Whatisafast forward merge?

. Afteragit clone, howis naster set up for you?

. How do you commit to a remote branch?

. Why does a preparatory r ebase make it easier to accept and apply a patch?

. When resolving a merge conflict, what does gi t st at us display? How about after the conflict is resolved?

. What does it mean to have a common ancestor? What does the book mean when it says that Git selects the common ancestor automatically,

while the user must select it in other version control systems?

. What's the difference between the lowercase d and uppercase D switches to gi t branch?

. Describe a three-tier hierarchical development branch system.

. Is it a good idea for the local branch to have a different name than the remote branch it's tracking?
. What happens when you rebase?

Tuesday January 21, 18:00 PDT:

Pro Git Chapter 2: Git Basics

Discussion questions:

©CONDUTAWN R

. Whatdoesgit init do?
. What data is not copied viagit cl one?

What does it mean when gi t st at us reports "(working directory clean)"?
What does it mean when a file is listed under both Changes to be committed and Changes not staged for commit?

. I know I've changed something. Why isn't gi t di f f showing me anything?

What are some of the functions served by gi t add?

. Howisgit |og -p different fromgit show?

How do you skip the staging area when committing?

. What's the opposite of add?

. How do you unstage a file without blowing away changes?

. How do you blow away changes?

. Howisgit pull different fromsvn up?

. Whatis gi t mv a shortcut for?

. What's the difference between author and committer? How do you display both in gi t | og output?
. What do you do when you've screwed up the last commit?

. How do you persuade gi t | og to show which files changed?

. How do you display the branch visuals with gi t | og?

. What's the difference between a lightweight tag and an annotated tag? How are lightweight tags like branches?
. What does git auto-completion get you? How is it implemented?

Tuesday January 14, 18:00 PDT:

Pro Git Chapter 1: Getting Started

Discussion questions:

CONOUPWNE

. What are some backup strategies that don't use version control?

What are some of the features of version control?

What does RCS stand for?

How does RCS produce the current contents of a file which has been changed many times?
How is RCS better than saving copies of files in time-stamped directories?

How does version control differ from a backup system like Time Machine?

. What problem inherent to local version control systems like RCS were centralized version control systems designed to solve?
. What are the pros and cons of centralized version control?
. What are the pros and cons of distributed version control?

#
#
http://git-scm.com/book/en/Git-Branching
http://git-scm.com/book/en/Git-Basics
http://git-scm.com/book/en/Getting-Started

10. Which version control systems store snapshots and which store differences?
11. How did Linux manage version control until around 2002?
12. What were some of the design criteria for Git?
13. Whyisgit | og so much faster than svn | 0og?
14. Would Git work well for the following tasks?
writing a novel
writing poetry
writing a journal
writing magazine articles
taking notes on academic classes
managing a small static website
form letters
archiving log files
documentation
magazine layouts
raster image files, e.g. Photoshop native format
.m3u playlists
video editing projects
® MIDI music sequence files
15. How does addressing content by hash improve Git's integrity?
16. What are the security advantages of a DVCS?
17. When your commit changes only one file out of many, how does Git handle saving the state of the files which have *not* changed?
18. What are the three states that a tracked file can be in at any time? What is the state of an untracked file?
19. What is Git's "staging area" and how is it implemented?
20. What are the three levels of config files for Git? Which overrides which?
21. Whenyourungit config --1ist,youmay see the same key multiple times with different values. What does this mean?

Tuesday June 18, 7:00 pm PDT:

Lectures from The Hardware/Software Interface

® Section 9: Virtual Memory
® Section 10: Memory Allocation

Review questions for section 9, "Virtual Memory":

. What four problems do the professors suggest that virtual memory solves?

"Any problem in computer science can be solved by..." what?

. Without indirection, what happens if you need to update data which exists at multiple memory locations?
. What are some non-computer-science examples of indirection?

What aren't there any machines which are capable of mapping a full 64-bit address space in physical memory?
What are some systems which use direct physical addressing?

. What are the three states for virtual memory pages?

. Roughly how large is a virtual memory page?

. Why not use write-through with virtual memory?

10. What's in a page table entry?

11. How many page tables per process?

12. How much of the MMU is implemented with hardware?

13. What's thrashing?

14. What permission bits are contained in typical page table entries?

15. Explain the sequence of events during a page hit.

16. What impact does address space size have on page table size?

17. How is responsibility divided between hardware and OS for implementing virtual memory?

©CONOUTAWNE

Review questions for section 10, "Memory Allocation":

1. How does the heap grow?
2. What alignment guarantees does malloc make?
3. What are the two conflicting performance goals of memory allocators?
4. There are two kinds of fragmentation: internal and external. Internal and external to what? How do they differ?
5. Briefly describe four approaches to managing a memory heap: implicit free list, explicit free list, segregated free list, and blocks sorted by size.
6. What are the differences between first fit, next fit and best fit?
7. What is splitting?
8. What is coalescing?
9. When memory is nearly full, which is faster: implicit or explicit free list?
10. For a segregated free list allocator, how closely does memory utilization approach best fit?

Bonus questions not answered by lecture:
1. If heap memory were executable, how might a double free() lead to a an exploit resulting in arbitrary code execution? Hint: it's like a stack buffer

overflow, but much harder for the attacker.
2. Why does Professor Ceze keep saying "Simple, right?" for stuff that isn't simple?

Tuesday June 11, 7:00 pm PDT:

Lectures from The Hardware/Software Interface

® Section 8: Processes

https://www.coursera.org/course/hwswinterface
https://www.coursera.org/course/hwswinterface

Review questions:

1. Jumps and calls suffice for responding to changes in program state. What kinds of state change do they not suffice for? 2. What's the difference
between synchronous and asynchronous exceptions? 3. Describe the three types of synchronous exceptions, and the differences between them
in terms of continued program flow. 4. When does the "interrupt pin" get set? 5. Describe program flow on a page fault which results in a
successful load from virtual memory. 6. What's the difference between a program and a process? 7. What are the two key abstractions provided
by processes? 8. Describe how the OS kernel uses exceptional control flow to provide the illusion of continuous execution to multiple concurrent
processes. 9. What is the distinction between concurrent and parallel? 10. Calling execve replaces a process's address space and code with a
new executable. What state, if any, persists across a call to execve? 11. What order do parent and child processes execute in after a fork()? 12.
What does execve() return? 13. Where are the parameters passed via execve() stored after the call completes? 14. What are the consequences
if a long-running parent process fails to reap zombie children? What happens once the neglectful parent terminates?

Bonus questions not answered by lecture:

1. Why does output to the standard file descriptors appear to be ordered when when processes exit()? 2. How expensive is fork()? 3. Why use fork
/execve instead of posix_spawn? How about vfork/execve as an alternative?

Tuesday June 4, 7:00 pm PDT:

Lectures from The Hardware/Software Interface
® Section 7: Memory and Caches
Review questions:

. How well has memory speed and memory bandwidth kept up with increases in CPU speed?

. What is the unit of memory which is transfered between caches?

. What are the two types of locality?

How should code for a loop which iterates over a multi-dimensional array change depending on whether the array is stored in column-major or
row-major order?

5. Why is it faster to perform matrix multiplication in blocks rather than row by row?

6. How much faster do hits have to be than misses in order for a 99% hit rate to be twice as fast as a 97% hit rate?

7. Why is miss rate often used rather than hit rate?
8
9

~AwnNPR

. What's the typical miss penalty for L1? L2? Main memory? Can there be a miss penalty for data stored a register?
. How are caches divided within the Intel Core i7?
10. What are the drawbacks of a direct-mapped cache? What are the drawbacks of a fully associative cache?
11. What purpose does the tag in a cache entry serve?
12. In addition to the tag, a cache read also involves a set index and a block offset — but those numbers are not stored explicity as part of the cache
entry. How are they used?
13. How is the valid bit used in the context of a write-back cache?
14. What's are the differences between a "cold miss", a "conflict miss" and a "capacity miss"? Is it possible to have a "conflict miss" in a fully
associative cache?
15. What data was used to generate the "Memory Mountain" graphic on the front cover of the text?

Bonus questions not answered by lecture:

1. What's faster: SRAM or DRAM? Why?

2. Describe situations in which spacial locality can be exploited — both for data and for instructions.

3. According to the professors, the "big idea" of the memory hierarchy is to create "a large pool of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at the rate of the fast storage near the top." What usage pattern might defeat this technique?

4. Data intensive applications (such as large-scale search engines) may be constrained by memory bus bandwidth despite caching. What are some
techniques to address this problem?

Tuesday May 21, 7:00 pm PDT:

Lectures from The Hardware/Software Interface

® Section 5: Procedures and Stacks
® Section 6: Arrays and Structs

Review questions:

1. In the Linux process memory layout, the instructions and stack are at different ends of the address space. Which is on the high end, and which is
on the low end? 2. Under normal circumstances, what portions of memory can contain executable instructions? (stack, heap, static data,
instructions) 3. What is a return address? How is it stored when a procedure is called, so that the callee can get at it? 4. In what ways are the cal |
and r et instructions complementary? 5. Why might registers be divided between caller-saves and callee-saves, rather than being all one or the
other? 6. Where is the standard location for returning a value? 7. Without a stack, only global variables are available for use by subroutines. What
popular language feature would this cripple? 8. Does the callee always return before the caller under all possible circumstances? No exceptions?
9. What gets stored in a stack frame? How much less gets stored on the stack in x86-64 than in IA32? 10. Imagine a function which takes 8
arguments of type i nt named ar g1 through ar g8. How would they be passed under IA32? Under x86-64? Under 1A32, what will you find at 8(%
ebp) ? How about at 4(%ebp) ? 11. What's the difference between a multi-dimensional array and a multi-level array? Which one is used by Java?
12. When the compiler compiles a loop over a fixed range of elements in an array, it may use pointer math rather than indexing. Why might this
be more efficient? 13. Are C nested arrays guaranteed to be implemented using "row-major" or "column-major" order? 14. How can a single | eal
instruction be used to multiply the value in a register by 5? 15. What is the definition of "aligned data"? 16. Why is it inefficient (at best) to retrieve
unaligned data? 17. What's the difference between 1A32 and 32-bit Windows with regards to alignment of doubl e? 18. What are some of the
countermeasures which have made stack-smashing attacks more difficult?

https://www.coursera.org/course/hwswinterface
https://www.coursera.org/course/hwswinterface

Bonus questions not answered by lecture:

1. Under x86-64, the frame pointer (%ebp in IA32) is omitted. How will everything be addressed relative to the stack pointer when alloca() is
invoked? 2. In C, array[2] and 2[arr ay] are equivalent. So are arr ay[- 3] and - 3[array] . Why? 3. Does si zeof include padding bytes
at the end of a struct in its calculation? 4. Is a non-executable stack in a JIT environment still helpful?

Tuesday May 14, 7:00 pm PDT:

Lectures from The Hardware/Software Interface

® Section 3: Basics of Architecture, Machine Code
® Section 4: x86 Assembly

Review questions:

1. What are the four steps of C compilation? 2. What's the difference between instruction set architecture and microarchitecture? Under whose
domain is cache size? Core frequency? Number of registers and their width? 3. What processor introduced "flat addressing"? 4. What are the four
registers in x86 and x86-64 which describe condition codes? What purpose do they serve? 5. What are the three basic categories of assembly
instructions? 6. How typesafe is assembly code? 7. What will disassembling a function with gdb tell you that disassembling with obj dunp will
not? 8. What are the origins of the names of the x86 registers? 9. How would you get at a single byte within an x86 register? 10. What are the
four integer op suffixes from AT&T assembler and what do they stand for? 11. What is the pointer dereferencing operator in AT&T assembler?
What character is used as a sigil for constants? 12. Describe displacement and indirect addressing modes. Describe the "general form" of the
addressing idiom. 13. How can the LEA instruction be abused to perform simple arithmetic using the general form of addressing? What checks
are omitted by LEA which are performed by standard arithmetic instructions like ADD? 14. What allows chips which implement the x86-64 ISA to
perform fewer manipulations of the stack than x86 chips? 15. What's the difference between the SARL and SHRL instructions? 16. What register
do the jX "jump" instructions modify? 17. What do testX and cmpX do? 18. What it is the point of t est | %eax %eax? 19. Which control
construct requires more JMP instructions: while or do-while? How many JMP instructions does a for-loop require? 20. How does the cnovC
"conditional move" instruction make it possible to avoid a JMP? 21. What advantage does PC-relative addressing offer over absolute addressing?
22. Under what circumstances can a swi t ch statement be implemented as a "jump table"? 23. Explain the instruction j np *. L62(, %edx, 4)

Tuesday April 30, 7:00 pm PDT:
Lectures from The Hardware/Software Interface

® Section 0: Introduction
® Section 1: Memory, Data and Addressing
® Section 2: Integer and Floating Point Numbers

Review questions:

1. What is hardware? What is software? What is the "hardware/software interface" as defined by the instructors? What do you, personally, hope to
gain from studying the "hardware/software interface"? 2. What attributes of assembly language make it easier to understand than machine code?
3. Why might a computer process/thread be described as an "illusion"? 4. What aspect of the low and high voltages representing zeroes and ones
limits CPU clock speed? 5. In what sense are CPU registers, CPU cache, main memory, persistent storage (e.g. hard disk), and offline storage (e.
g. offsite backups) all "memory"? How do they differ? 6. What are the advantages of little-endian architecture with respect to casting between
integer widths? 7. Adding 1 to a pointer adds how much to the address? 8. In a C assignment statement, what must the left-hand side evaluate to,
and what must the right-hand side evaluate to? What do scalar variable names in C represent? 9. What determines the value of the expression &a
rray[1] - &array[0] ? 10. How would you implement a show_bi t s function to complement the show_byt es function from the lecture on
arrays? 11. What are the practical applications of [DeMorgan]'s Law? 12. Why doesn't C provide support for bit arrays, instead only supporting the
application of "bitwise" operators to integral data types? There has to be a better way... right? 13. In C, how do the logical complement operator
and the bitwise complement operator differ? 14. What set operations do the four bitwise operators & | ~ ! correspond to? 15. What is a one-hot
encoding? A two-hot encoding? 16. What are the drawbacks of sign-and-magnitude representation of negative numbers? 17. In a 8-bit two's-
complement representation, what is the value of the LSB? Of bits 2-7? And finally, what is the value of the MSB? 18. Which representation allows
for reuse of the adder used for unsigned integers on the CPU chip: one's complement, or two's complement? 19. How can an adder be adapted
to perform binary subtraction? 20. When casting, what operations does the processor actually perform? In what cases is casting just a matter of
reinterpreting a bit pattern which exists in memory, and in what cases does the bit pattern have to be changed? 21. What is the result of the C
expression -1 < 0U? 22. Of the problems you solved in bits.c programming assignment, which was the most satisfying and why?

Tuesday April 23, 7:00 pm PDT (Postponed from April 16th):

Drepper Paper:

https://www.coursera.org/course/hwswinterface
https://www.coursera.org/course/hwswinterface

I mprovi ng Generated Code

I ncreasing Security

Sinmple Profiling of Interface Security
Mai nt ai ning APl's and ABls

What are APl's and ABIs?

Defining Stability

ABI Ver si oni ng

Restricting Exports

Handl i ng Conpati bl e Changes (G\U)
Handl i ng Conpati bl e Changes (Sol ari s)
I ncompat i bl e Changes

Usi ng Versioned DSCs

Inter-Object File Relations

WwWwowwowwowwowhdhN
©CONOUIAWNRONO® U

Review questions:
1. For IA-32, how can one help reduce access to the GOT address? Why is this a bad idea for IA-64?
2. The -z relro linker option will help fix what security issue with DSOs? How would one turn off lazy relocation?
3. Re-review, what is the PLT stand for again? And how is it different from the GOT?
4. What happens if one is profiling and the PLT is not used? What would the DL_CALL_FCT macro do?
5. What is the ABI?
6. What does LD_BIND_NOW do?
7. What was Sun's solution to versioning and how does it work?
8. Why should symbol maps be used all the time?
9. Take a look at the code sample on page 37, left hand column, what is the .symver doing this instance?
10. What does @@ mean? What does just @ mean?
11. In a mapping file what does local: * mean?
12. What does LD_LIBRARY_PATH do? What are run paths?

13. What is a DST and how are they useful?

Tuesday April 9, 7:00 pm PDT:

Drepper Paper:

4 Define Visibility for C++ cl asses
5 Use Export Maps

6 Libtool's -export-synbols

2.2.7 Avoid Using Exported Synbols
Shorteni ng Synbol Nanes

Choosing the R ght Type

2.4.1 Pointers vs Arrays

2.4.2 Forever Const

3 Array of Data Pointers

4 Array of Function Pointers

5 C++ Virtual Function Tables

2.2.
2.2.
2.2.

NN
AW

2.4,
2. 4.
2.4,

Review questions:
1. What purpose does -fvisibility-inlines-hiddens serve, especially in regard to C++?
2. Why is the strategy of using the most restrictive visibility possible a good practice when writing C++ to work with EIf?
3 What is a symbol map file for?
4 What is a wrapper function? And what are drawbacks of using wrapper functions?
5. What is an alias?

6. Is using DF_SYMBOLIC a good idea?

7. Why is the length of symbol name important? And why in C++ is this a problem?

8. Why is char str[] = "some string" more optimal than char *str = "some string"?

9 What are some other ways to make string lookup faster?

10. Why is using read only memory when possible more optimal?

11 Why is a switch statement a good way to implement an array of functions like behavior?

12. How do virtual function tables impact startup time?

Tuesday April 2, 7:00 pm PDT:

Drepper Paper:

Opti m zations DSCs

ta Definitions

port Control

2.1 Use static

2.2 Define Gobal Visibility
2.3 Define Per Synbol Visibility

2.0
2.1 Da
2.2 Ex
2.
2.
2.

Review questions:
Questions:
1. When compiling code that is going to be used as a DSO, why is it important to use the -fpic/-fPIC flags?
2. On page 16, right hand column, there are two code samples. What is different about them? And why is the second one significant?
3. What is the easiest way to not export a variable or function?
4. Why did the author add "static" to last and next in the first code sample on page 18, left hand column?
5. Since C doesn't provide a way to define visibility of a function or variable, how does GCC allow the programmer to indicate visibility within the code?
6. What does

7. If -fvisibility=hidden is used, how would | enable a symbol to have default visibility?

Tuesday March 19, 7:00 pm PDT:

(Rescheduled from March 12.)

15.1.2 The Common Language | nfrastructure
15.2 Late Binding of Machi ne Code
15.2.1 Just-In-Tinme and Dynami c Conpil ation
15.2.2 Binary Translation
15.2.3 Binary Rewiting
15. 2.4 Mobil e Code and Sandboxi ng
15. 3 I nspection/Introspection
15.3.1 Reflection
15. 3.2 Synbol i ¢ Debuggi ng
15. 3.3 Performance Analysis
15.4 Summary and Concl udi ng Remar ks

Tuesday March 5, 7:00 pm PDT:

From PLP3:

15.1 Virtual Machines
15.1.1 The Java Virtual Machine

Review questions: 1-8 on page 784.

From How To Write Shared Libraries by Ulrich Drepper:

http://www.akkadia.org/drepper/dsohowto.pdf

rtup in the Dynam c Linker
1 The Rel ocation Process

2 Synbol Rel ocations

3 The GNU-style Hash Tabl e
4 Lookup Scope

5 GOT and PLT

6

PRrRrPREPRQ

al
5
5.
5.
5
5
5

.5.6 Running the Constructors
1.6 Summary of the Costs of ELF
1.7 Measuring | d.so Perfornance

Review questions for the Drepper:

6. Why do NUL-terminated strings make horrible hash keys?

7. How can interposition be used to override the behavior of a named procedure?

8. How can different C++ name mangling schemes have an impact on symbol hash lookup times?

9. Compare ELF hash lookup with GNU-style hash lookup.

10. Consider this source code, which consists of a declaration of a function nunge and an int f oo which must be defined elsewhere, and a function munge
_f 0o which references both.

int
munge(int num;

extern int foo;

int
munge_f oo(voi d) {
return nunge(foo);

}

Narrate the following assembly generated for nunge_f oo when it is compiled as position-independent code.

nov| f oo@OT(%ebx), %eax
pushl (%ax)
cal l minge@\LT

11. Summarize the costs of the GOT (Global Offset Table) and the PLT (Procedure Linkage Table).

Tuesday February 12, 7:00 pm PDT:

From PLP3:

14. 4 Address Space Organi zation
14.5 Assenbly
14.5.1 Emtting Instructions
14.5.2 Assigning Addresses to Nanes
14. 6 Linking
14.6.1 Rel ocation and Nane Resol ution
14. 6.2 Type Checking
14.7 Dynami c Li nki ng*
14.7.1 Position-Independent Code*
14.7.2 Fully Dynanic (Lazy) Linking*
14.8 Summary and Concl udi ng Remar ks

* includes auxiliary CD material

Additionally, we'll cover the first few sections of Ulrich Drepper's paper, How To Write Shared Libraries:

http://www.akkadia.org/drepper/dsohowto.pdf

1 Preface
1.1 ALittle Bit of History
1.2 The Move To ELF
1.3 How I's ELF I npl emrent ed?
1.4 Startup: In The Kernel

Here are review questions for the Drepper material:

1. What limitations of the a. out format make it ill-suited for creating shared libraries? If a modern Linux system supplied shared libraries derived
from a. out , how would that affect applications which use them? 2. What is the main difference between a compiled ELF shared library and a
compiled binary executable? 3. If you're creating a very large application which takes a long time to link, how can you use shared libraries to
minimize the edit-compile-test loop and maximize programmer efficiency? Compare this use of shared libraries to traditional separate compilation.
4. When loading the contents of an executable file into memory, why is it desirable to mark as many pages as possible non-writable? 5. Where
must the El f 32_Phdr and El f 64_Phdr program header structs be located in an ELF object file? What is the first member in these program
header structs?

Tuesday February 5, 7:00 pm PDT:

14.1 Back-End Conpiler Structure
14.1.1 A Plausible Set of Phases
14. 1.2 Phases and Passes
14.2 Internedi ate forns*
14. 2.1 D ana*
14. 2.2 The gcc | Fs*
14. 2.3 Stack-Based Internedi ate Forns
14. 3 Code Generation
14.3.1 An Attribute Granmar Exanple
14.3.2 Register Allocation

* includes auxiliary CD nateri al

Tuesday January 29, 7:00 pm PDT:

13.3 Scripting the Wrld Wde Wb
13.3.1 CA Scripts
13. 3.2 Enbedded Server-Side Scripts
13.3.3 dient-Side Scripts
13.3.4 Java Applets
13.3.5 XSLT

13.4 Innovative Features
13.4.1 Nanes and Scopes
13.4.2 String and Pattern Manipul ation
13. 4.3 Data Types
13.4.4 Cbject Orientation

13.5 Summary and Concl udi ng Remar ks

Tuesday January 22, 7:00 pm PDT:

13.1 What Is a Scripting Language?
13.1.1 Common Characteristics
13.2 Probl em Donai ns
13.2.1 Shell (Comrand) Languages
13.2.2 Text Processing and Report Generation
13.2.3 Mathematics and Statistics
13.2.4 "d ue Languages" and General - Purpose Scripting
13. 2.5 Ext ensi on Languages

Tuesday January 15, 7:00 pm PDT:

The Lucy Book Club is taking a break from our book-in-progress this week to read a paper on integer compression techniques. One of the algorithms
described in the paper is PFOR-DELTA (Patched Frame-Of-Reference with delta encoding), which is particularly suitable for inverted lists.

Super-Scalar RAM-CPU Cache Compression by Marcin Zukowski, Sandor Héman, Niels Nes, Peter Boncz

http://oai.cwi.nl/oai/asset/15564/15564B.pdf

We'll go over the following questions:

1. Why is PFOR-DELTA interesting to Lucy? 2. What is a segment in PFOR-DELTA? 3. What are the 4 major parts of a segment? What is in them?
4. What are the tradeoffs for choosing different sizes of b (bit width)? 5. What type of data structure is used to keep track of exceptions? 6. What
is a compulsory exception? How does it influence your choice of b? 7. PFOR-DELTA is a very interesting compression technique, but why is it
really faster? What is PFOR-DELTA really optimizing for? 8. In their testing, was RAM-RAM or RAM-Cache faster and why? 9. Fine-grained
access has some extra cost — what is it?

Tuesday January 8, 7:00 pm PDT:

12.5 Message Passi ng
12. 5.1 Nami ng Communi cation Partners
12. 5.2 Sendi ng
12.5.3 Receiving
12.5.4 Renote Procedure Call

Thursday January 3, 7:00 pm PDT:

12. 4 Language- Level Mechanisms
12.4.1 Monitors
12.4.2 Conditional Critical Regions
12. 4.3 Synchroni zation in Java
12. 4.4 Transactional Menory
12.4.5 Inplicit Synchronization
12.5 Message Passi ng
12. 6 Summary and Concl udi ng Remar ks

Tuesday December 18, 7:00 pm PDT:

12.3 I npl ementing Synchroni zation
12. 3.1 Busy-Wait Synchronization
12. 3.2 Nonbl ocki ng Al gorithmns
12. 3.3 Menory Consi stency Mdel s
12. 3.4 Schedul er Inplenentations
12. 3.5 Semaphores

Tuesday December 11, 7:00 pm PDT:

12. 1 Background and Motivation
12.1.1 The Case for Miltithreaded Prograns
12.1.2 Ml tiprocessor Architecture

12.2 Concurrent Programmi ng Fundanental s
12. 2.1 Communi cation and Synchroni zation
12. 2.2 Languages and Libraries
12.2.3 Thread Creation Syntax
12.2.4 I nplenentation of Threads

Tuesday December 4, 7:00 pm PDT:

11 Logic Languages [the entire chapter -- dead-tree material only]

Tuesday November 27, 7:00 pm PDT:

9.5 Miltiple Inheritance [including aux naterial

10. 4 Evaluation Order Revisited
10.4.1 Strictness and Lazy Eval uation
10.4.2 I/ O Streans and Mnads
10.5 Hi gher Order Functions
10. 6 Theoretical Foundations [book only]
10. 7 Functional Programming in Perspective
10. 8 Summary and Concl udi ng Renar ks

Tuesday November 13, 7:00 pm PDT:

9.6 Object-Oiented Programing Revisited
9.6.1 The Object Mdel of Smalltalk [including aux materi al

10 Functional Languages

10.1 Historical Oigins

10. 2 Functional Programm ng Concepts
10.3 A Revi ew Overvi ew of Schene

10.
10.
10.
10.
10.
10.

Optional:

9.5 Multiple Inheritance [including aux material

o U A ®WN

1

Bi ndi ngs

Li sts and Nunbers

Equal ity Testing

Control Flow and Assi gnnent
Progranms as Lists

Ext ended Exanpl e: DFA Sinul ation

Tuesday November 6, 7:00 pm PDT:

9.4 Dynanmic Method Bindi ng
9.4.1 Virtual and Nonvirtual Methods
9.4.2 Abstract Cl asses
9.4.3 Menber Lookup
9. 4. 4 Pol ynor phi sm
9.4.5 Object Cosures
9.5 Miltiple Inheritance [book only]
9.6 Object-Oiented Programing Revisited
9.6.1 The Obj ect Mddel of Smalltalk [including aux materi al
9.7 Summary and Concl udi ng Remar ks

Tuesday October 30, 7:00 pm PDT:

9.2 Encapsul ation and I nheritance
9.2.1 Modul es

9.2.
9.2.
9.2.
9.2.
9.3 Init
9.3
9.3
9.3
9.3

2 Cl asses

3 Nesting (lInner O asses)

4 Type Extensions

5 Extending w thout Inheritance
ialization and Finalization

1 Choosing a Constructor

2 References and Val ues

3 Execution O der

4 Carbage Col | ection

Tuesday October 23, 7:00 pm PDT:

9.1 Object-Oiented Progranmng

on CD and questi ons]

on CD and questi ons]

on CD and questions]

on CD and questions]

Tuesday October 16, 7:00 pm PDT:

8.8

outines

.1 Stack Allocation

.2 Transfer

.3 Inplenentation of Iterators
.4 Discrete Event Sinulation
ts

.1 Sequential Handlers

8. 7.2 Thread-Based Handl ers
Summary and Concl udi ng Remar ks

Tuesday October 9, 7:00 pm PDT:

8.4

neri c Subroutines and Mdul es
1 Inplenmentation Options
2 Generic Paraneter Constraints
3 Inmplicit Instantiation
4 CGenerics in C++, Java, and C#
eption Handling
1 Defining Exceptions
Excepti on Propagation
I npl erentati on of Exceptions

4.
4.
4.
4.
c
. 5.
. 5.
. 5.

2
3

Tuesday October 2, 7:00 pm PDT:

© ®
N e

8.3

iew of Stack Layout
ling Sequences
.1 Displays

Regi st er W ndows

I n-Li ne Expansion

ter Passing

Par armet er Mbdes

Cal | - by- Nanme

Speci al - Pur pose Paraneters

.2
.3
4
ame
.1
.2
.3
.4 Function Returns

Tuesday September 25, 7:00 pm PDT:

7.7

Poi nters and Recursive Types
7.7.1 Syntax and Operations
7.7.2 Dangling References
7.7.3 Garbage Collection

7.8 Lists
7.9 File and | nput/CQut put

Case Studies: Con on the MPS; Pascal

7.10 Equality Testing and Assignnent
7.11 Summary and Concl udi ng Remar ks

Tuesday September 18, 7:00 pm PDT:

on the x86

7.3 Records (Structures) and Variants (Unions)
7.3.1 Syntax and Operations
7.3.2 Menory Layout and Its |npact
7.3.3 "Wth™ Statenents
7.3.4 Variant Records (Unions)

7.4 Arrays
7.4.1 Syntax and Operations
7.4.2 Dinensions, Bounds and Allocation
7.4.3 Menory Layout

7.5 Strings

7.6 Sets

Tuesday September 11, 7:00 pm PDT:

7.1 Type Systens
7.1.1 Type Checking
1.2 Pol ynor phi sm
1.3 The Meaning of "Type"
1.4 Cassifications of Types
1.5 Othogonality
7.2 Type Checking
2.1 Type Equival ence
2.
2.
2.

JdNNNN

1

2 Type Conpatibility
3 Type Inference
4

7.
7.
7.
7. The M. Type System

Tuesday September 04, 7:00 pm PDT:

6.5 lteration

5.1 Enuneration-Controlled Loops
5.2 Conbi nati on Loops

5.3 Iterators

5.4 Ordering wthin Expressions
5.5 Generators in Icon

5.6 Logically Controlled Loops
cursion

.6.1 Iteration and Recursion
.6.2 Applicative-and Normal - Order Eval uation
7 ndet er m nancy

8 Summary and Concl udi ng Remar ks

6.6 u

gmmg@w@@@@

oo

Tuesday August 28, 7:00 pm PDT:

6.1 Expression Eval uation
6.1.1 Precedence and Associativity
6. 1.2 Assignnments
6.1.3 Ordering wthin Expressions
6.1.4 Short-Circuit Evaluation

6.2 Structured and Unstructured Fl ow
6.2.1 Structured Alternatives to goto
6.2.2 Continuations

6. 3 Sequenci ng

6.4 Sel ection

6.4.1 Short-Circuited Conditions
6.4.2 Case/ Switch Statenents

Tuesday August 21, 7:00 pm PDT:

The Role of the Semantic Anal yzer
Attribute G amrmars

Eval uating Attributes

Action Routines

Space Managenent for Attributes
Decorating a Syntax Tree

Summary and Concl udi ng Remar ks

PRAARAER
N U A WN R

Tuesday August 14, 7:00 pm PDT:

3.5 The Meaning of Names within a Scope
3.5.1 Aliases
3.5.2 Overloading
5. 3 Pol ynor phi sm and Rel at ed Concepts
e Binding of Referencing Environnents
6.1 Subroutine O osures
6.2 First-Class Values and Unlinited Extent
.6.3 bject Cosures
Macro Expansi on
Separate Conpil ation
Summary and Concl udi ng Remar ks

© o~

Tuesday August 7, 7:00 pm PDT:

The Notion of Binding Tinme
ject Lifetinme and Storage Managenent
Static Allocation

St ack- Based Al |l ocation
Heap- Based Al l ocation
Gar bage Col | ection

Rul es

Static Scoping

Nest ed Subroutines

Decl arati on Order

Modul es

Mbdul e Types and C asses
Dynani ¢ Scopi ng

npl emrenti ng Scope

3.1
3.2
3.
3.
3.
3.

A WN PP

w
w
(7]

C

WWWwwWwwWwwoNMNNNDN
0]

o g wWN P

3
3
3
3.
3
3
3.4 1

Tuesday July 31, 7:00 pm PDT:

2.3 Parsing
2.3.1 Recursive Descent
2.3.2 Tabl e-Driven Top-Down Parsing
2.3.3 Bottom Up Parsing

2.3.4 Syntax Errors

Tuesday July 17 Meeting

2.1 Specifying Syntax: Regul ar Expressions and Context-Free G anmmars
2.1.1 Tokens and Regul ar Expressions
2.1.2 Context-Free G ammars
2.1.3 Derivations and Parse Trees

2.2 Scanni ng

1 Generating a Finite Automaton

Scanner Code

Tabl e- Dri ven Scanni ng

Lexical Errors

2.2.
2.2.
2.2.
2.2.
2.2.5 Pragmas

2
3
4
5

Thursday July 12 Meeting

Had discussions surrounding the Check your understanding sections on pages 16, 25, and 35.

Possible Future Books

Managing Gigabytes, by lan H Witten.

Object-Oriented Programming: An Evolutionary Approach, by Brad J Cox.

The Art of Unix Programming, by Eric Steven Raymond.

Information Retrieval: Implementing and Evaluating Search Engines, by Some people.
Communicating Sequential Processes, by C. A. R. Hoare

Object-Oriented Programming With ANSI-C, Axel Schreiner

Past Books

Programming Languages Pragmatics, by Michael L Scott

Hacks 'n Koans

Apropos of our git reading, here's an interesting and useful git alias. Paste it into your ~/.gitconfig in the [alias] section (man git-config if you've never edited
your .gitconfig before):

"blameh" is for doing "git blame" when you want to see information on

every commit on the current branch that affected a given range of |ines
#1in a file. There is a plenitude of git-fu-for-aliases in here.

Synt ax: git bl ameh FILE LI NESPEC

Description: Show historical culpability for $FILE, limted by $LI NESPEC

For the full syntax of LINESPEC, see git-blanme(1l) (the "-L" option).
Basi ¢ $LI NESPEC:

1234 show | ines 1234 to ECF

/ f oo/ show first line matching /foo/ to end (slashes required)

1234, 1240 show | i nes 1234 to 1240

1234, +3 show 3 lines starting at 1234 (i.e., 1234 to 1236)

1234,-2 show 2 lines culnminating at 1234 (i.e., 1233 to 1234)

Exanpl e:
Somebody broke Whoops: : borked() a while ago; show who did what when.
% git bl ameh Whoops. pm ' /sub borked/,/ "}/

Not es:

Aliases that shell out (i.e., those whose values begin with "!")
are run fromthe top-level directory of the repo; "cd $d T_PREFI X"
is to put us back in our working directory.

"git blanme ... 2>/dev/null || git show..." is because there's no way
to tell "git blame" *not* to barf if $LINESPEC isn't valid for the
given commit, and that's a commobn use case for this alias. Plus,
I would like to see any commits that |'m gl ossing over.

The arcane choi ces for single quotes, double quotes, and backsl ashes
are intentional. You can tweak them but it's not trivial.

| aneh =1Ish -c ""\
cd \"$A T_PREFI X\ "; \
git rev-list HEAD \"$1\" | while read cnt; do \

T o oo H H R H H R R HHH R HHH W R HH

git blame \"-L$0\" $cnt -- $1 2>/dev/null || git bl aneh-show $cnt; \
echo \" ---\"; \
done" "

"bl ameh-show' is broken out as its own alias to show how one alias can

call another, and also so that you can easily custom ze that piece.

E.g., you might want to change "--pretty=oneline" to "--pretty=raw', or
to 'exit 0" if you don't want to show ski pped commits at all.

bl aneh- show = show --qui et --abbrev-conmit --pretty=oneline

http://www.amazon.com/Managing-Gigabytes-Compressing-Multimedia-Information/dp/1558605703/ref=sr_1_1?ie=UTF8&qid=1347647932&sr=8-1&keywords=Managing+Gigabytes
http://www.amazon.com/Object-Oriented-Programming-Evolutionary-Brad-Cox/dp/0201548348/ref=sr_1_1?s=books&ie=UTF8&qid=1347648038&sr=1-1&keywords=Object-Oriented+Programming%3A++An+Evolutionary+Approach
http://www.faqs.org/docs/artu/index.html
http://www.amazon.com/Information-Retrieval-Implementing-Evaluating-Engines/dp/0262026511
http://www.usingcsp.com/cspbook.pdf
http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.amazon.com/Programming-Language-Pragmatics-Third-Edition/dp/0123745144/ref=sr_1_1?ie=UTF8&qid=1342155294&sr=8-1&keywords=programming+language+pragmatics

	LucyBookClub

