Use different spark pool for different query

Kylin 4.0 use fair scheduler as spark scheduler mode in query module. The fair scheduler supports grouping jobs into pools, and setting different
scheduling options (e.g. weight) for each pool.This can be useful to create a “high-priority” pool for more important jobs, for example, or to group the jobs of
each user together and give users equal shares regardless of how many concurrent jobs they have instead of giving jobs equal shares. For more about
spark fair scheduler, you can refer to https://spark.apache.org/docs/latest/job-scheduling.html.

In kylin4.0, user can config different spark pool in project level and sql level, and the configuration priority of SQL level is higher than that of project level.
There are four spark pool in Kylin, which are 'query_pushdown’, 'heavy_tasks', 'lightweight_tasks' and 'vip_tasks'.

If the user does not specify spark pool at both the SQL level and the project level, kylin will automatically adjust the spark pool used by SQL according to
some rules.

Here are some examples of usage:

* 1Config spark pool at the project level

Projects
Name Owner $ Description $ Create Time ¢
@ learn_kylin
Cubes Access Configuration Overwrites

Key Value

kylin.query.spark.pool vip_tasks

Then all query in this project will use the 'vip_tasks' pool to execute:

[QUERY]
Query Id: b3e@bf51-e99f-cf50-e6cc-6d9ad84562F4
SQL: select count(x*)

from kylin_sales

User: ADMIN

Success: true

Duration: 39.531

Project: learn_kylin

Realization Names: [CUBE[name=kylin_sales_cubel]
Cuboid Ids: [16384]

Total scan count: 31

Total scan bytes: @

Result row count: 1

Accept Partial: true

Is Partial Result: false

Hit Exception Cache: false

Storage cache used: false

Is Query Push-Down: false

Is Prepare: false

Used Spark pool: vip_tasks

Trace URL: null

Message: null

[QUERY]

= 20verride spark pool at SQL level

https://spark.apache.org/docs/latest/job-scheduling.html

POST v http://host:port/kylin/api/query/

Params Authorization @ Headers (12) Body @ Pre-request Script Tests
none form-data x-www-form-urlencoded @ raw binary GraphQL
1 A
2 "sql":"select count(x) from kylin_sales ",
3 "project":"learn_kylin",
4 "backdoorToggles":{
5 "DEBUG_TOGGLE_SPARK_POOL":"heavy_tasks"
6 }
7 X

Then this sql will use the 'heavy_tasks' pool to execute

[QUERY]
Query Id: da381988-4db8-0523-97b2-bbh3824488d9%9c
SQL: select count(*) from kylin_sales

User: ADMIN

Success: true

Duration: 2.529

Project: learn_kylin

Realization Names: [CUBE[name=kylin_sales_cubell]
Cuboid Ids: [16384]

Total scan count: 31

Total scan bytes: @

Result row count: 1

Accept Partial: false

Is Partial Result: false

Hit Exception Cache: false

Storage cache used: false

Is Query Push-Down: false

Is Prepare: false

Used Spark pool: heavy_tasks

Trace URL: null

Message: null

[QUERY]

= 3SQL pushed down to spark will use 'query_pushdown' pool to execute
~ Completed Stages (2)

Stageld v Pool Name Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1 query_pushdown Push down: select * from kylin_sales limit 1 2020/08/26 10:42:16 0.2s n 302.0B
collect at SparkSqlClient.scala:87 +details
0 query_pushdown Push down: select * from kylin_sales limit 1 2020/08/26 10:42:14 25 2/2 127.8 KB 302.0B
collect at SparkSqClient.scala:87 +details

= 4Without any configuration, the SQL will be allocated to 'lightweight_tasks'

Settings

JSON

v

[QUERY]

Query Id: 3dd357a3-108e-200a-7cfa-981f2569953d
SQL: select count(s)

from kylin_sales

User: ADMIN

Success: true

Duration: 0.361

Project: learn_kylin

Realization Names: [CUBE[name=kylin_sales_cube]]
Cuboid Ids: [16384]

Total scan count: 31

Total scan bytes: @

Result row count: 1

Accept Partial: true

Is Partial Result: false

Hit Exception Cache: false

Storage cache used: false

Is Query Push-Down: false

Is Prepare: false

Used Spark pool: lightweight_tasks
Trace URL: null

Message: null

[QUERY]

	Use different spark pool for different query

