
How to improve cube building and query performance

Background
Cube building performance tuning

Use proper Spark resources and configurations to build cube data
Automatically setting spark configurations
Manually setting spark configurations (if needed)

Global dictionary building performance tuning
Snapshot tables building performance tuning

Query performance tuning
Reduce small or uneven parquet files

The strategy to check whether needs to repartition
The relevant configurations
How to set the above configurations properly

Use shard by column to prune parquet files
How to use shard by column
Recommendations

Use sort by columns to filter data quickly when reading parquet files
Pack a number of small files into a single partition
Enable off-heap
Set different configurations for each query

Reference

Release History

ID Date Author Comment

1 2020-11 Zhichao Zhang Tuning guide for 4.0.0-alpha,

2 2022-5 Shaofeng Shi Update for 4.0.1

Background

 Kylin 4 is a version, as the picture shows below, both the cube building engine and query engine use spark as calculation major architecture upgrade
engine, and cube data is stored in parquet files instead of HBase.

The build and query performance tuning is very different from Kylin 3 tuning(). This article will http://kylin.apache.org/docs/howto/howto_optimize_build.html
introduce how to improve cube build and query performance in Kylin 4, including some tuning ways which will be made by Kylin 4 automatically.

http://kylin.apache.org/docs/howto/howto_optimize_build.html

1.
2.

Cube building performance tuning

In Kylin 4, there are two steps in the cube building job:

The first step is detecting how many source files will be built as cube data;
The second one is to build the snapshot tables (if needed), generate the global dictionary (if needed) and build cube data as parquet files.

In the second step, all calculations are operations with a relatively heavy load, so except using "Joint" or "Hierarchy" on dimensions to reduce the number
of cuboids (refers to the section ' in), it’s also very important to Reduce combinations' http://kylin.apache.org/docs/tutorial/cube_build_performance.html
use proper spark resources and configurations to build cube data. There are in this section to improve cube building performance.3 key points

Use proper Spark resources and configurations to build cube data

 Assume your Spark application runs on YARN, the relevant configurations are as below:

Key Description

spark.
executor.
instances

The number of executors for spark application.

spark.
executor.cores

The number of cores to use on each executor. The value of 'spark.executor.instances' * 'spark.executor.cores' is the maximum
parallelism when running the cube building job.

spark.
executor.
memory

Amount of memory to use per executor process. Generally speaking, the ratio of core to memory is 1:4, for example, if you set 'spark.
executor.cores' to 4, and then set 'spark.executor.memory' to 16G.

spark.
executor.
memoryOverh
ead

The amount of off-heap memory to be allocated per executor. This is the memory that accounts for things like VM overheads, interned
strings, other native overheads, etc. This tends to grow with the executor size (typically 6-10%).

spark.sql.
shuffle.
partitions

Configures the number of partitions to use when shuffling data for joins or aggregations, the default value is 200. A larger value
requires more CPU resources, while a smaller value requires more memory resources.

spark.sql.files.
maxPartitionBy
tes

The maximum number of bytes to pack into a single partition when reading files, the default value is 128M. If there are many small
files in source tables (Hive source), the spark will automatically pack a number of small files into a single partition to avoid too many
small tasks.

Automatically setting spark configurations

You can set these configurations with a 'kylin.engine.spark-conf.' prefix in 'kylin.properties' file; for example: 'kylin.engine.spark-conf.spark.executor.
'. Then Kylin 4 will use them to allocate spark resources for the cube building job.instances

Similar to the tuning in spark + parquet, you may find out some problems through the Spark UI and change some configurations to improve performance,
there are many articles describing how to improve the performance in spark + parquet, such as http://spark.apache.org/docs/2.4.6/sql-performance-tuning.

 and . html http://spark.apache.org/docs/2.4.6/tuning.html

If you don't know how to set these configurations properly, Kylin 4 will use the below allocation rules to automatically set spark resources and
configurations, all spark resources and configurations are set according to and the maximum file size of source files whether the cube has accurate

, this is the reason why we need to detect how many source files which will be built in the first step. You can see these allocation count distinct measure
rules in the class 'SparkConfHelper':

ExecutorMemoryRule

If then set ' ' to 20G; ${the maximum file size} >= 100G and ${exist accurate count distinct}, spark.executor.memory

 If , then set ' ' to ${the maximum file size} >= 100G or (${the maximum file size} >= 10G and ${exist accurate count distinct}) spark.executor.memory
16G;

 If , then set ' ' to 10G;${the maximum file size} >= 10G or (${the maximum file size} >= 1G and ${exist accurate count distinct}) spark.executor.memory

 If , then set ' ' to 4G;${the maximum file size} >= 1G or ${exist accurate count distinct} spark.executor.memory

 Otherwise set ' to 1G.spark.executor.memory'

ExecutorCoreRule

 If then set ' to 5;${the maximum file size} >= 1G or ${exist accurate count distinct}, spark.executor.cores'

 Otherwise set ' ' to 1.spark.executor.cores

ExecutorOverheadRule

http://kylin.apache.org/docs/tutorial/cube_build_performance.html
http://spark.apache.org/docs/2.4.6/sql-performance-tuning.html
http://spark.apache.org/docs/2.4.6/sql-performance-tuning.html
http://spark.apache.org/docs/2.4.6/tuning.html

1.
2.
3.

4.
5.

6.
7.

8.

9.

1.

 If then set ' ' to 6G, so in this case, the ${the maximum file size} >= 100G and ${exist accurate count distinct}, spark.executor.memoryOverhead
memory of per executor is 20G + 6G = 26G;

 If , then set '${the maximum file size} >= 100G or (${the maximum file size} >= 10G and ${exist accurate count distinct}) spark.executor.
' to 4G;memoryOverhead

 If then set '${the maximum file size} >= 10G or (${the maximum file size} >= 1G and ${exist accurate count distinct}), spark.executor.
 to 2G;memoryOverhead'

 If , then set ' ' to 1G;${the maximum file size} >= 1G or ${exist accurate count distinct} spark.executor.memoryOverhead

 Otherwise set ' ' to 512M.spark.executor.memoryOverhead

ExecutorInstancesRule

 The steps to set ' ' are as follows:spark.executor.instances

Get the value of required cores, the default value is 1;
Get the value of configuration ' ' as basic executor instances, default value is 5;kylin.engine.base-executor-instance
According to the number of the cuboids, calculate the required number of executor instances: The ${calculateExecutorInsByCuboidSize}.
configuration of the calculation strategy is ' ', default value is '100,2,500,3,1000,4', which means if the kylin.engine.executor-instance-strategy
number of the cuboids is greater and equal than 100, the factor is 2, and then the number of executor instances is ${basic executor instances} *
${factor} = 10, if greater and equal than 500, the factor is 3, and so on.
Get the available memory and cores count of the default pool from yarn: and ;${availableMem} ${availableCore}
Get the sum memory value after applying 'ExecutorOverheadRule' and 'ExecutorMemoryRule' : ${executorMem} = ${spark.executor.memory} +

;${spark.executor.memoryOverhead}
Get the cores count after applying 'ExecutorCoreRule': ${executorCore}
According to ${availableMem}, ${availableCore}, ${executorCore} and ${executorMem}, calculate the maximum executor instances count which
can request from yarn: ; The ${queueAvailableInstance} = Math.min(${availableMem} / ${executorMem}, ${availableCore} / ${executorCore})
purpose of this step is to avoid applying for more than the available resources on yarn.
Get the final executor instances count: ${executorInstance} = Math.max(Math.min(${calculateExecutorInsByCuboidSize},

;${queueAvailableInstance}), ${kylin.engine.base-executor-instance})
Set ' ' to ${executorInstance};spark.executor.instances

ShufflePartitionsRule

Set 'spark.sql.shuffle.partitions' to the value of ' ';max(2, ${the maximum file size in MB} / 32)

 After applying all rules above, you can find some log messages in 'kylin.log' file as below:

Manually setting spark configurations (if needed)

Based on the values of automatically adjusted configurations by Kylin, if there are still some cube building performance issues, you can appropriately
change the values of these configurations to have a try, for example:

If you observe from the Spark UI that there is a in some tasks, or find a large number of executor lost or fetch failure serious GC phenomenon
errors, you can change the value of these two configurations to increase the memory per executor:

spark.executor.memory=
spark.executor.memoryOverhead=

The general adjustment strategy is to increase the value by 2 times. If the problem is solved, you can decrease it appropriately to avoid wasting
resources. After increasing the memory per executor, if there is still a serious memory problem, you can consider adjusting 'spark.executor.cores' to
1, this adjustment can make a single task exclusive memory per executor and the execution efficiency is relatively low, but it can be done in this way
to avoid build failure.

If you observe from the Spark UI that there are a large number of tasks that need to be scheduled for multiple rounds (each round eats all cores),
you can change the value of these two configurations to increase the cores count of the spark application:

spark.executor.cores=
spark.executor.instances=

1.
2.

3.

 The general adjustment strategy is to increase the value by 2 times. If the problem is solved, you can decrease it appropriately to avoid wasting
resources.

If there are some , and just because the number of reducers during shuffling is too small, or the data is executor lost or fetch failure errors
skewed, you can try to increase the value of ' '.spark.sql.shuffle.partitions

If you observe from the Spark UI that the duration time of the job is more than the sum duration time of stages, this means that the core resources
are not enough and there are many jobs are waiting for core resources to be scheduled:

 The duration time of this job is 3.0 min, but the sum duration time of stages is 17s + 2s = 19s, the stage 204 waited more than 2.0 min to be
scheduled.

In this case, you need to increase the cores count of the spark application.

Global dictionary building performance tuning

If the cube has accurate "count distinct" measures, Kylin 4.0 will build the global dictionary for these measure columns in the second step based on Spark
for distributed encoding processing, which reduces the pressure on a single machine node, and can break the limit of the maximum integer of the global
dictionary, please refer to the detail design article: . There is one https://cwiki.apache.org/confluence/display/KYLIN/Global+Dictionary+on+Spark
configuration about tuning on global dictionary building:

 (default value is 500000)kylin.dictionary.globalV2-threshold-bucket-size

Reducing the value of this configuration can reduce the amount of data in a single partition to build the global dictionary and speed up the dictionary
building.

Snapshot tables building performance tuning

If there are some snapshot tables to be built, Kylin 4.0 will build them parallelly in the second step, because the default value of the configuration 'kylin.
' is true, which will speed up the snapshot tables building.snapshot.parallel-build-enabled

On the other hand, you can reduce the value of configuration ' ' (default value is 128MB) to increase the parallelism when kylin.snapshot.shard-size-mb
building snapshot tables. According to the size of the source table, make sure the number of the building tasks is within 3 times the number of cores of the
spark cube building application.

Query performance tuning

In Kylin 4.0, the query engine (called) uses spark as the calculation engine too, it's a real distributed query engine, especially for complex SparderContext
queries, the performance will be better than Apache Calcite. However, there are still many key performance points that need to be optimized.

In addition to setting proper calculation resources mentioned above, it also includes reducing small or uneven files, setting proper partitions, and pruning
parquet files as many as possible. Kylin 4.0 and Spark provide some optimization strategies to improve query performance.

Reduce small or uneven parquet files

Reading too many small files or a few too big files when querying will lead to low performance, in order to avoid this problem, Kylin 4.0 will repartition
parquet files according to the following strategy to reduce small or uneven parquet files when building cube data as parquet files.

The strategy to check whether needs to repartition

If the following conditions are met

If this cuboid has shard by column;
The average size of parquet files which have saved < the value of configuration ' && the kylin.storage.columnar.repartition-threshold-size-mb'
number of parquet files is bigger than 1; This condition is to avoid too many small files;

https://cwiki.apache.org/confluence/display/KYLIN/Global+Dictionary+on+Spark

3. The number of parquet files < , if this cuboid has accurate (the total row count of parquet files / 'kylin.storage.columnar.shard-rowcount * 0.75)'
count distinct measure, use ' instead of ' ; This kylin.storage.columnar.shard-countdistinct-rowcount' kylin.storage.columnar.shard-rowcount'
condition is to avoid uneven files;

If meet the one of the conditions above, it will do repartition, the number of the partitions is calculated by this way:

 ${fileLengthRepartitionNum} = Math.ceil(${the parquet files size in MB} / ${kylin.storage.columnar.shard-size-mb})

 ${rowCountRepartitionNum} = Math.ceil(${the total row count of parquet files} / ${kylin.storage.columnar.shard-rowcount})

If this cuboid has accurate count distinct measure, use ' instead of kylin.storage.columnar.shard-countdistinct-rowcount' 'kylin.storage.columnar.shard-
.rowcount'

The number of the partitions is :

 Math.ceil((${fileLengthRepartitionNum} + ${ rowCountRepartitionNum }) / 2)

The relevant configurations

Key Default
value

Description

kylin.storage.columnar.shard-size-
mb

128MB The max size of each parquet file for shard by column, in MB.

kylin.storage.columnar.shard-
rowcount

2500000 Each parquet files should contain at most 2.5 million rows.

kylin.storage.columnar.shard-
countdistinct-rowcount

1000000 Since that Bitmap has a bigger size, so we can specify the max row count for cuboids containing
Bitmap. By default, it contains at most 1.0 million rows.

kylin.storage.columnar.repartition-
threshold-size-mb

128MB The max size of each parquet file, in MB.

How to set the above configurations properly

You can use this command to find the repartition info messages in the kylin.log file after building cube data:

grep "Before repartition, cuboid" logs/kylin.log

According to the log messages, you can find that the final number of partitions is too large, this will impact the building performance and query
performance, after increasing the value of configuration ' ' or ' ' kylin.storage.columnar.shard-rowcount kylin.storage.columnar.shard-countdistinct-rowcount
and rebuilding again, the log messages are shown below:

The final number of partitions was reduced a lot: 809 to 3, and the time of cube building was reduced a lot too: 58 mins to 24 mins:

And the query performance is improved too:

The query time from the cube which has a too large number of partitions is 1.7s, and the query engine scanned 58 files.

But the query time from a cube that has a proper number of partitions is 0.4s, and the query engine only scanned 4 files.

Use shard by column to prune parquet files

In Kylin 4.0, the directory structure of parquet file storage is as follows:

When querying, the query engine can filter out the segment-level directories through , and filter out the cuboid-level directories the date partition column
through , but at this time, if there are still many parquet files in the cuboid-level directories, you can use to further the hit cuboid shard by column
prune parquet files.

How to use shard by column

From Cube Designer Advanced Setting Rowkeys in Kylin UI, you can specify a shard by column when creating a cube:

After specifying a shard by column, it will repartition parquet files by this column when building cube data (If you do not specify, repartition is done with all
columns).

When querying with this shard by column as a filter condition, the query engine will prune parquet files according to the value of shard by column, for
example:

1.
2.
3.
4.

There are two parquet files in each of the cuboid 131084 directories of these two cubes: and ;kylin_sales_cube_non_shardby kylin_sales_cube_shardby

Querying from cube ' ' which doesn't specify shard by column is scanning 2 files.kylin_sales_cube_non_shardby

Querying from cube ' ' which specifies shard by column is only scanning 1 file.kylin_sales_cube_shardby

Recommendations

Currently, it only supports the following filtering operations with shard by column in SQL query to prune parquet files:
Equality
In
InSet
IsNull

Because it only supports specifying shard by column for one cube currently, it's better to use a column that has high cardinality and often is one
used as a filter condition, such as a mandatory dimension column. If the specified shard by column is not a mandatory dimension, there are some
cases where the cuboid cannot use this shard by column; for example, the specified shard by column is A, but the columns of one cuboid are B,
C, D.

Use sort by columns to filter data quickly when reading parquet files

When you create a cube, you can specify the order of the dimension columns, and when saving cube data, the first of the dimension columns for each
cuboid will be used to do the sort operation. The purpose is to filter out unwanted data as much as possible through the min-max index of the parquet file
when querying with the sort by column.

From Cube Designer Advanced Setting Rowkeys in Kylin UI, you can drag the columns to adjust the order:

For example: if the cuboid includes these three columns: BUYER_ID, TRANS_ID, LEAF_CATEG_ID, then it will sort data in one partition by the
BUYER_ID column when saving this cuboid data.

Notes: Currently Apache Spark 2.4.6 which Kylin 4.0 used only supports filtering out unwanted data through the min-max index of RowGroup in parquet
files, which means that if there are some RowGroups in one parquet file, Spark will filter out unwanted data by the min-max index of RowGroup, but if one
parquet file only includes one RowGroup, the filter doesn't take effect.

Pack a number of small files into a single partition

When there are many small files in some segments which had been built, you can set the configuration ' ' (default value is spark.sql.files.maxPartitionBytes
128MB) to a proper value, which will let the spark engine pack some small files into a single partition and avoid to need too many small tasks, for example:

This query scanned 2 parquet files but it used one task to handle these two files:

On the other hand, if there are enough resources, you can reduce the value of configuration ' ' to increase the parallel spark.sql.files.maxPartitionBytes
tasks, but it also needs to reduce the value of configuration ' ' (default value is 128MB) when building cube data, because spark.hadoop.parquet.block.size
the smallest split unit of parquet files is RowGroup and configuration ' ' indicates the maximum size of one RowGroup for spark.hadoop.parquet.block.size
parquet.

Enable off-heap

Spark can directly operate the off-heap memory to reduce unnecessary memory overhead, as well as frequent GC, and improve processing performance.

Relevant configurations:

Key Description

spark.memory.offHeap.enabled Set to 'true', use off-heap memory for spark shuffle e.g.

spark.memory.offHeap.size indicates the size of off-heap memory.

Set different configurations for each query

Currently, all queries share one Spark Session, which means that all of them share the same configurations, but each query has different scenarios and
could be optimized by different configurations. Therefore, we plan to clone a thread-level SparkSession for each query to set different configurations, and
then execute the query, such as configuration ' ', set this configuration to different values according to the amount of data spark.sql.shuffle.partitions
obtained by each query to achieve the optimal query performance.

Reference

http://kylin.apache.org/docs/tutorial/cube_build_job.html
http://kylin.apache.org/docs/howto/howto_optimize_build.html
http://spark.apache.org/docs/2.4.6/tuning.html
https://cwiki.apache.org/confluence/display/KYLIN/Global+Dictionary+on+Spark

http://kylin.apache.org/docs/tutorial/cube_build_job.html
http://kylin.apache.org/docs/howto/howto_optimize_build.html
http://spark.apache.org/docs/2.4.6/tuning.html
https://cwiki.apache.org/confluence/display/KYLIN/Global+Dictionary+on+Spark

	How to improve cube building and query performance

