
Metrics

Introduction
Audience
Related Development Work
Building Metrics on MapReduce Context's
Hadoop Counter's
Metrics Table

CleaningJob
CrawlDbFilter
CrawlDbReducer
DeduplicationJob
DomainStatistics
Fetcher
FetcherThread
Generator
IndexerMapReduce
Injector
ParseSegment
QueueFeeder
ResolverThread
SitemapProcessor
UpdateHostDbMapper
UpdateHostDbReducer
WebGraph
WARCExporter

Conclusion

Introduction
This page provides a narrative on Nutch application metrics. It details which metrics are captured for which Nutch Job's within which Tasks.

Metrics are important because they tell you vital information about any given Nutch (and subsequently MapReduce) process. They provide accurate
measurements about how the process is functioning and provide basis to suggest improvements.

Metrics provide a data-driven mechanism for intelligence gathering within Nutch operations and administration.

Audience
The page is intended for

users who wish to learn about how Nutch Jobs and Tasks are performing, and
developers who would wish to further extend/customize Nutch metrics

Related Development Work

 - NUTCH-2909 Getting issue details... STATUS

Several rows in the below reference JIRA issues.metrics table

Building Metrics on MapReduce Context's
As Nutch is a native MapReduce application, the Mapper and Reducer functions of each implementation i.e. , NutchTool CommonCrawlDataDumper Craw

, , , , , , , utilize and 's. lDb DeduplicationJob Fetcher Generator IndexingJob Injector LinkDb ParseSegment MapContext's ReduceContext
These Context's are passed to the Mapper and Reducer initially during setup but also used throughout each Mapper or Reducer task lifecycle.

Revision history

STATUS: DRAFT

30 Sep 2023 Improve readability of the metrics table

29 Dec 2021 1st draft of Nutch Metric documentation completed and open for feedback (lewismc)

https://issues.apache.org/jira/browse/NUTCH-2909
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/util/NutchTool.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/tools/CommonCrawlDataDumper.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/CrawlDb.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/CrawlDb.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/DeduplicationJob.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/fetcher/Fetcher.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/Generator.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/indexer/IndexingJob.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/Injector.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/LinkDb.html
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/parse/ParseSegment.html
https://hadoop.apache.org/docs/stable/api/index.html?org/apache/hadoop/mapreduce/MapContext.html
https://hadoop.apache.org/docs/stable/api/index.html?org/apache/hadoop/mapreduce/ReduceContext.html

This is relevant because these Context's inherit certain methods from the interface org.apache.hadoop.mapreduce. . Specifically, the TaskAttemptContext g
methods facilitate access to Hadoop 's which we discuss below. etCounter(...) Counter

Hadoop Counter's
A is simply a record comprising a name and value. As one would expect, Counter's can be incremented in order to count for example how many Counter
total records were processed within a task completion.

The following example shows how Counter's are used within the Nutch Injector to count the total number of URLs filtered during the Map phase of this job.

Use of Counters in the Nutch Injector

 @Override
 public void map(Text key, Writable value, Context context)
 throws IOException, InterruptedException {
 if (value instanceof Text) {
 // if its a url from the seed list
 String url = key.toString().trim();

 // remove empty string or string starting with '#'
 if (url.length() == 0 || url.startsWith("#"))
 return;

 url = filterNormalize(url);
 if (url == null) {
 context.getCounter("injector", "urls_filtered").increment(1);

The code on demonstrates the counter for counter group being incremented by 1.Line 14 urls_filtered injector

The end result is that we generate useful, insightful metrics for each mapper and reducer task for any given Nutch Job.

See below for details on each Nutch metric available.

Metrics Table
The table below provides a canonical, comprehensive collection of Nutch metrics.

Tool
/Object

Hadoop
Metric
Group

Hadoop
Metric
Name

Sink
Metrics
Key

Sink
Metric
Type

Description Usage and Comments

Clea
ningJ
ob

CleaningJob
Status

Deleted
documents

The total count of (HTTP DB_GONE
404) and/or DB_DUPLICATE
documents ultimately deleted from
the indexer(s).

This metric is useful for determining whether filtering or duplicate detection needs to happen further
upstream prior to indexing. Ideally and documents would not make it into DB_GONE DB_DUPLICATE
production indices in the first place.

Craw
lDbFi
lter

CrawlDB filter Gone records
removed

The total count of (HTTP DB_GONE
404) records deleted from the
CrawlDB during an update.

See for more details. - NUTCH-1101 Getting issue details...
STATUS

CrawlDB filter Orphan
records
removed

The total count of pages e.orphaned
g. a page which have no more other
pages linking to it, deleted from the
CrawlDB during an update.

See for more details. - NUTCH-1932 Getting issue details...
STATUS

Hadoop documentation

The canonical Hadoop documentation for and provides much more detail about the involvement of Context's in each task Mapper Reducer
lifecycle.

1.
2.
3.

Table Ordering Logic

The table is arranged

by column; alphabeticallyTool
by the alphabetically for the given toolHadoop Metric Group;
by ; alphabetically for the given metric groupHadoop Metric Name

https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/TaskAttemptContext.html
https://hadoop.apache.org/docs/stable/api/index.html?org/apache/hadoop/mapreduce/Counter.html
https://hadoop.apache.org/docs/stable/api/index.html?org/apache/hadoop/mapreduce/Counter.html
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/CleaningJob.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/CleaningJob.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/CleaningJob.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbFilter.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbFilter.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbFilter.java
https://issues.apache.org/jira/browse/NUTCH-1101
https://issues.apache.org/jira/browse/NUTCH-1932
https://hadoop.apache.org/docs/stable/api/index.html?org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/stable/api/index.html?org/apache/hadoop/mapreduce/Reducer.html

CrawlDB filter URLs filtered The total count of filtered pages e.g.
pages which didn't pass one or more

 implementation(s), deleted URLFIlter
from the CrawlDB during an update.

This metric is generally useful for determining the overall effectiveness of URLFilter plugins over time.

POSSIBLE IMPROVEMENT: This metric could be improved if an association could be made between
the URL was filtered and the URLFilter which filtered it. This would facilitate aggregating URLFiltering
results by URLFilter.

Craw
lDbR
educ
er

CrawlDB
status

CrawlDatum.g
(etStatusName

()CrawlDatum .
())getStatus

With each URL able to have only one
state at any given point in time, this
metric facilitates aggregated counts
of the different types of CrawlDatum

 for a given CrawlDB.states

The state of any given URL will change as the URL transitions through a crawl cycle. Available URL
states are defined in the e.g., , CrawlDatum STATUS_DB_UNFETCHED , STATUS_DB_FETCHED ST

, etc. Practically, CrawlDatum status' are defined using byte signatures but ATUS_FETCH_SUCCESS
accessed programmatically using static final constants.

This metric can be used to identify the presence of undesired URL CrawlDatum status' for given URL's
e.g., Such an event could then trigger a cleaning/pruning operation.STATUS_DB_GONE.

Dedu
plicat
ionJob

Deduplication
JobStatus

Documents
marked as
duplicate

The total number of duplicate
documents in the CrawlDB.

The process of identifying (near) duplicate documents is of vital importance within the context of a
search engine. The precision of any given information retrieval system can be negatively impacted if
(near) duplicates are not identified and handled correctly. This does not always mean removing them,
for example maybe (near) duplicates are important for versioning purposes. In most cases however it
is preferred to identify and remove (near) duplicate records.

The Deduplication algorithm in Nutch groups fetched URLs with the same digest and marks all of them
as duplicate except the one with the highest score (based on the score in the crawldb, which is not
necessarily the same as the score indexed). If two (or more) documents have the same score, then
the document with the latest timestamp is kept. If the documents have the same timestamp then the
one with the shortest URL is kept.

A duplicate record will have a CrawlDatum status of CrawlDatum STATUS_DB_DUPLICATE..

Dom
ainSt
atisti
cs

N/A MyCounter EM.
PTY_RESULT

The total count of empty (probably
problematic) URL records for a given
host, domain, suffix or top-level
domain.

It is possible that the DomainStatistics tool may identify an empty record for a given URL. This may
happen regardless of whether the tool is invoked to retrieve host, domain, suffix or top-level domain
statistics. When this discovery event occurs, it it is likely that some investigation would take place to
understand why. For example, the could be invoked with the command line CrawlDbReader -url
argument to further debug/detail what CrawlDatum data exists.

N/A MyCounter FE.
TCHED

The total count of fetched URL
records for a given host, domain,
suffix or top-level domain.

This metric is particularly useful for quickly drilling down through large datasets to determine, for
example, how much 'coverage' for a given host, domain, suffix or top-level domain. has been achieved
This figure can be compared to a website administrators total.

N/A MyCounter NO.
T_FETCHED

The total count of unfetched URL
records for a given host, domain,
suffix or top-level domain.

This metric is particularly useful for quickly drilling down through large datasets to determine, for
example, how much 'coverage' for a given host, domain, suffix or top-level still has to be achieved
domain. When combined with the figure and compared to a website administrators total it can fetched
provide useful insight.

Fetc
her

FetcherStatus bytes_downloa
ded

The total bytes of fetched data
acquired across the Fetcher Mapper
task(s).

Over time, this can be used to benchmark how much data movement is occurring over the Nutch crawl
network.

POSSIBLE IMPROVEMENT: This metric could be improved if a correlation could be made between
the volume of data and the source it came from whether that be a given host, domain, suffix or top-
level domain.

https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/net/URLFilter.html
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDatum.java#L62-L105
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDatum.java#L62-L105
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDatum.java#L62-L105
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/DeduplicationJob.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/DeduplicationJob.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/DeduplicationJob.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/domain/DomainStatistics.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/domain/DomainStatistics.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/domain/DomainStatistics.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/domain/DomainStatistics.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDbReader.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/Fetcher.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/Fetcher.java

FetcherStatus hitByThrougpu
tThreshold

A total count of the URLs dropped
across all fetch queues due to
throughput dropping below the
threshold too many times.

This aspect of the Nutch Fetcher configuration is designed to prevent slow fetch queues from stalling
the overall fetcher throughput. However it usually has the impact of increasing the latency/timeliness of
URLs actually being fetched if they are essentially dropped because of low throughput. This means
that they are until a future fetch operation.shelved

The specific configuration settings is

fetcher.throughput.threshold.pages

<property>
 <name>fetcher.throughput.threshold.pages</name>
 <value>-1</value>
 <description>The threshold of minimum pages per
second. If the fetcher downloads less
 pages per second than the configured threshold,
the fetcher stops, preventing slow queue's
 from stalling the throughput. This threshold
must be an integer. This can be useful when
 fetcher.timelimit.mins is hard to determine. The
default value of -1 disables this check.
 </description>
</property>

A more thorough understanding of Fetcher configuration relating to (slow) throughput requires an
understanding of the following configuration settings as well

Additional fetcher throughput configuration

<property>
 <name>fetcher.throughput.threshold.retries</name>
 <value>5</value>
 <description>The number of times the fetcher.
throughput.threshold.pages is allowed to be
exceeded.
 This settings prevents accidental slow downs
from immediately killing the fetcher thread.
 </description>
</property>

<property>
<name>fetcher.throughput.threshold.check.after<
/name>
 <value>5</value>
 <description>The number of minutes after which
the throughput check is enabled.</description>
</property>

POSSIBLE IMPROVEMENT: It would be advantageous to understand which URLs from which hosts
in the queue(s) were resulting in slow throughput. This would facilitate investigation into this was why
happening.

FetcherStatus hitByTimeLimit A total count of the URLs dropped
across all fetch queues due to the
fetcher execution time limit being
exceeded.

This metric is valuable for quantifying the number of URLs which have been effectively e.timebombed
g. shelved for future fetching due to overall fetcher runtime exceeding a predefined timeout.

Although by default the Fetcher e.g. the configuration is set to , if a timeout is never times out -1
preferred then the following configuration property can be edited.

fetcher.timelimit.mins

<property>
 <name>fetcher.timelimit.mins</name>
 <value>-1</value>
 <description>This is the number of minutes
allocated to the fetching.
 Once this value is reached, any remaining entry
from the input URL list is skipped
 and all active queues are emptied. The default
value of -1 deactivates the time limit.
 </description>
</property>

POSSIBLE IMPROVEMENT: It could be useful to record the fact that a URL was staged due to it
being hit by the timeout limit. This could possibly be stored in the CrawlDatum metadata.

Also see - NUTCH-2910 Getting issue details...
STATUS

Fetc
herT
hread

FetcherStatus AboveExceptio
nThresholdInQ
ueue

The total count of URLs purged
across all fetch queues as a result of
the maximum number of protocol-
level exceptions (e.g. timeouts) per
queue being exceeded.

!! Also see the same metric below generated by the QueueFeeder. !!

This metric is useful for quantifying the number of URLs shelved for future fetching due to anomalies
occurring during fetcher execution exceeding a predefined ceiling.

Although by default the Fetcher e.g. the configuration is set to , if never enforces this behaviour -1
this is changed then this total count will become a useful metric to track. Further information on the
configuration parameter can be seen below

fetcher.max.exceptions.per.queue

<property>
 <name>fetcher.max.exceptions.per.queue</name>
 <value>-1</value>
 <description>The maximum number of protocol-
level exceptions (e.g. timeouts) per
 host (or IP) queue. Once this value is reached,
any remaining entries from this
 queue are purged, effectively stopping the
fetching from this host/IP. The default
 value of -1 deactivates this limit.
 </description>
</property>

POSSIBLE IMPROVEMENT: It could be useful to record the fact that a URL was staged due to it
being hit by the exception limit. Additionally, it could be useful to write metadata to all URLs which
contributed towards the limit being met. This could possibly be stored in the CrawlDatum metadata.

FetcherStatus FetchItem.
notCreated.
redirect

A total count of URLs across all fetch
queues for which following redirect(s)
resulted in no result.

Essentially, each FetcherThread attempts to understand and eliminate all redirect options e.g.
duplicate redirect URL, before giving up on a redirect URL entirely. In the case of a redirect URL for
which no logical fetch outcome can be produced e.g. that the is , redirecting is simply FetchItem null
deactivated as it is impossible to continue.

FetcherStatus outlinks_detect
ed

A total count of detected outlinks for
all fetch items (URLs) across all fetch
queues.

This metric can be used to estimate the number in URLs to be fetched in the next fetch phase. If for
example, resources were being allocated within the client at configuration/compile time (rather than
dynamically at runtime) this could be used to inform resource reservations, utilization and data
partitioning logic.

FetcherStatus outlinks_follow
ing

From (see outlinks_detected
directly above), this is a total count of
URLs which will be followed.

This metric value be the same as or it may be less. This ultimately depends may outlinks_detected
on a few things i.e.,

whether the fetcher is configured to follow external outlinks
whether a given URL is already followed
whether a given URL is already fetched

FetcherStatus ProtocolStatus
.getName()

Total counts of all the different
fetched finished status' for all URLs.

For a comprehensive collection of the various fetched finish status' to expect, check out the private sta
. This metric is useful defined within ProtocolStatus codeToNametic final HashMap< , >Integer String

for understanding, from across your CrawlDb, the status of certain URLs. Via different tools, you can
begin to investigate further.

https://issues.apache.org/jira/browse/NUTCH-2910
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/FetcherThread.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/FetcherThread.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/FetcherThread.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/FetchItem.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/protocol/ProtocolStatus.java#L103-L121
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/protocol/ProtocolStatus.java#L103-L121

FetcherStatus redirect_count
_exceeded

Total count of all URLs which have
exceeded the maximum configured
number of redirects.

See the following configuration property in nutch-default.xml

http.redirect.max

<property>
 <name>http.redirect.max</name>
 <value>0</value>
 <description>The maximum number of redirects the
fetcher will follow when
 trying to fetch a page. If set to negative or 0,
fetcher won't immediately
 follow redirected URLs, instead it will record
them for later fetching.
 </description>
</property>

This metric is useful for understanding how many URLs are possibly skipped due to a large number of
redirects.

Also see the following property

http.redirect.max.exceeded.skip

<property>
 <name>http.redirect.max.exceeded.skip</name>
 <value>false</value>
 <description>
 Whether to skip the last URL in a redirect
chain when when redirects
 are followed (http.redirect.max > 0) and the
maximum number of redirects
 in a chain is exceeded (redirect_count > http.
redirect.max).
 If not skipped the redirect target URLs are
stored as `linked`
 and fetched in one of the following cycles.
See also NUTCH-2748.
 </description>
</property>

FetcherStatus redirect_dedup
licated

Total count of duplicate (and hence
not fetched) redirected URLs.

No fetching takes place for this class of redirect URLs as they are duplicates of other redirect URLs
already fetched.

FetcherStatus robots_denied Total count of all URLs not fetched
due to being denied by robots.txt
rules.

By default Nutch is configured to respect and comply with robots.txt rules for any given site. It is useful
to know how many URLs may not be fetched from a given site due to robots.txt compliance.

FetcherStatus robots_denied
_maxcrawldelay

Total count of URLs which are
skipped due to the robots.txt crawl
delay being above a configured
maximum.

The following configuration property must be consulted for a detailed explanation behind this metric.

fetcher.max.crawl.delay

<property>
 <name>fetcher.max.crawl.delay</name>
 <value>30</value>
 <description>
 If the Crawl-Delay in robots.txt is set to
greater than this value (in
 seconds) then the fetcher will skip this page,
generating an error report.
 If set to -1 the fetcher will never skip such
pages and will wait the
 amount of time retrieved from robots.txt Crawl-
Delay, however long that
 might be.
 </description>
</property>

Essentially, a delay of 5 seconds is used for fetching requests unless a crawl delay to the same host
is specified within the robots.txt. Also see

fetcher.server.delay

<property>
 <name>fetcher.server.delay</name>
 <value>5.0</value>
 <description>The number of seconds the fetcher
will delay between
 successive requests to the same server. Note
that this might get
 overridden by a Crawl-Delay from a robots.txt
and is used ONLY if
 fetcher.threads.per.queue is set to 1.
 </description>
</property>

FetcherStatus robots_defer_v
isits_dropped

Total count of URLs skipped after all
trials to fetch the robots.txt failed with
HTTP 5xx.

See and property NUTCH-2573 http.robots.503.defer.visits

ParserStatus mParseStatus.
ajorCodes[p.
getData() getS.
tatus().getMajo

()]rCode

Total count of major codes (see
right) from parsing URLs.

ParseStatus defines three major categories for the result of an URL parse operation. i.e., , notparsed s
 anduccess failed. This metric is useful for debugging how many parse operations failed for a given

crawl cycle. Subsequent parse attempts can then be made or the URL record can be handled
appropriately.

Gene
rator

Generator EXPR_REJEC
TED

Total count of URLs rejected by Jexl
expression(s) during the generate
phase.

This metric is useful for determining the impact that that (provided via the Generator Jexl expressions
CLI) have on filtering URLs. The expressions are evaluated during the Generator Map phase.

All of the configuration which drives this metric is read or set from Java code and not explicitly defined
in nutch-default.xml.

https://issues.apache.org/jira/browse/NUTCH-2573
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/parse/ParseStatus.java#L46
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/Generator.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/Generator.java
https://commons.apache.org/proper/commons-jexl/

1.

2.

Generator HOSTS_AFFE
CTED_PER_H
OST_OVERFL
OW

Total count of host(s) or domain(s)
affected by the number of URLs
exceeding a configured fetchlist size
threshold.

This configuration property is essentially turned off by default e.g. there is no defined maximum
number of URLs per fetchlist. However, if a maximum is defined, then it is useful to know, how many
hosts or domains included in fetchlists have more URLs than allowed. In these cases additional URLs
won't be included in the fetchlist but bumped on to future crawling cycles.

The configuration property below will directly drive this metric.

generate.max.count

<property>
 <name>generate.max.count</name>
 <value>-1</value>
 <description>The maximum number of URLs in a
single
 fetchlist. -1 if unlimited. The URLs are counted
according
 to the value of the parameter generate.count.
mode.
 </description>
</property>

Generator INTERVAL_R
EJECTED

Total count of records rejected due
to retry or fetch interval being above
a configured thershold.

This configuration property is essentially turned off by default e.g. there is no minimum defined retry
This metric is useful for understanding the impact that changing that has on URL filtering.interval.

The configuration property below drives this metric.

generate.min.interval

<property>
 <name>generate.min.interval</name>
 <value>-1</value>
 <description>Select only entries with a retry
interval lower than
 generate.min.interval. A value of -1 disables
this check.</description>
</property>

Generator MALFORMED
_URL

Total count of malformed URLs
filtered.

In the Generator, malformed URLs are either discovered by

an URL normalizer implementation. This is turned on by default but can be toggled on or off
within the Generator CLI or programmatically
Attempting to extract either the URL host or domain (depending on which one is configured).
See the following property

generate.count.mode

<property>
 <name>generate.count.mode</name>
 <value>host</value>
 <description>Determines how the URLs are counted
for generate.max.count.
 Default value is 'host' but can be 'domain'.
Note that we do not count
 per IP in the new version of the Generator.
 </description>
</property>

Generator SCHEDULE_
REJECTED

Total count of URLs not suitable for
selection (in a given crawl cycle due
to the fetch time being higher than
the current time.

The metric description covers the case but this can change depending on the default fetch schedule
actual implementation. Of specific interest is which explains further. FetchSchedule#shouldFetch(...)
This metric can be useful for comparing .implementations of FetchSchedule

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/FetchSchedule.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/FetchSchedule.java#L163-L186
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/FetchSchedule.html

Generator SCORE_TOO
_LOW

Total count of filtered URL entries
with a score lower than a configured
threshold.

The configuration parameter which drives this metric is

generate.min.score

<property>
 <name>generate.min.score</name>
 <value>0</value>
 <description>Select only entries with a score
larger than
 generate.min.score.</description>
</property>

The default value for this configuration property means that all entries should be selected.

The metric can be useful to determine if a configured minimum value is too high and filters too many
URLs from being included in fetchlists.

Generator STATUS_REJ
ECTED

Total count of URLs filtered by
a CrawlDatum status filter.

The following configuration property is used to straight filter URLs depending on their CrawlDatum
status

generate.restrict.status

<property>
 <name>generate.restrict.status</name>
 <value></value>
 <description>Select only entries of this status,
see
 https://issues.apache.org/jira/browse/NUTCH-1248<
/description>
</property>

As an indication of the status keys which can be used, see .CrawlDatum.statNames

This metric is useful to simply see how effective the status filters are.

Generator URLS_SKIPP
ED_PER_HO
ST_OVERFLOW

Total count of URLs skipped by the
number of URLs exceeding a
configured fetchlist size threshold.

This configuration property is essentially turned off by default e.g. there is no defined maximum
number of URLs per fetchlist. However, if a maximum is defined, then it is useful to know, how many
URLs are skipped. In these cases additional URLs won't be included in the fetchlist but bumped on to
future crawling cycles.

The configuration property below will directly drive this metric.

generate.max.count

<property>
 <name>generate.max.count</name>
 <value>-1</value>
 <description>The maximum number of URLs in a
single
 fetchlist. -1 if unlimited. The URLs are counted
according
 to the value of the parameter generate.count.
mode.
 </description>
</property>

Index
erMa
pRed
uce

IndexerStatus deleted
(duplicates)

Total count of duplicate records
deleted from the indexing backend.

This configuration property is deactivated by default however it can be activated by providing the -
 flag to the IndexerJob CLI.deleteGone

The duplication algorithm is documented well in the . DeduplicationJob Javadoc

POSSIBLE IMPROVEMENT: See the commentary on whether a distinction should be made between
. This may ultimately result in these functions HTTP 404/gone, temp/perm redirects and duplicates

being broken out into individual flags and/or configuration properties in nutch-default.xml at which
stage this documentation will be updated.

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/CrawlDatum.java#L107-L136
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/IndexerMapReduce.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/IndexerMapReduce.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/IndexerMapReduce.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/indexer/IndexerMapReduce.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/DeduplicationJob.java#L54-L62
https://lists.apache.org/thread/5stc2z7v8w0b91v8qfgd9lz1t4so2t84
https://lists.apache.org/thread/5stc2z7v8w0b91v8qfgd9lz1t4so2t84

IndexerStatus deleted
(IndexingFilter)

Total count of deleted records as a
result of being skipped/filtered by
indexing filters.

This configuration property is deactivated by default but it can be activated either by providing the -para
 flag to the IndexerJob CLI or editing it in nutch-ms indexer.delete.skipped.by.indexingfilter=true

default.xml as shown below

indexer.delete.skipped.by.indexingfilter

<property>
 <name>indexer.delete.skipped.by.indexingfilter<
/name>
 <value>false</value>
 <description>Whether the indexer will delete
documents that were skipped by indexing filters
 </description>
</property>

Additional information on the original implementation can be found at https://issues.apache.org/jira
/browse/NUTCH-1449

IndexerStatus deleted (gone) Total count of HTTP 404/gone
records deleted from the indexing
backend.

If a Nutch deployment uses the then this configuration property is activated by default crawl script
otherwise it is deactivated. However it can be activated by providing the flag to the -deleteGone
IndexerJob CLI (as is done in the crawl script).

POSSIBLE IMPROVEMENT: See the commentary on whether a distinction should be made between
. This may ultimately result in these functions HTTP 404/gone, temp/perm redirects and duplicates

being broken out into individual flags and/or configuration properties in nutch-default.xml at which
stage this documentation will be updated.

IndexerStatus deleted
(redirects)

Total count of temporary and
permanently redirected records
deleted from the indexing backend.

This configuration property is deactivated by default however it can be activated by providing the -
 flag to the IndexerJob CLI.deleteGone

POSSIBLE IMPROVEMENT: See the commentary on whether a distinction should be made between
. This may ultimately result in these functions HTTP 404/gone, temp/perm redirects and duplicates

being broken out into individual flags and/or configuration properties in nutch-default.xml at which
stage this documentation will be updated.

IndexerStatus deleted
(robots=noinde
x)

Total count of deleted records which
contain meta robots="noindex"

This configuration property is deactivated by default but it can be activated either by providing the -para
 flag to the IndexerJob CLI or editing it in nutch-default.xml ms indexer.delete.robots.noindex=true

as shown below

indexer.delete.robots.noindex

<property>
 <name>indexer.delete.robots.noindex</name>
 <value>false</value>
 <description>Whether the indexer will delete
documents marked by robots=noindex
 </description>
</property>

See for more information.Google's Block Search indexing with noindex documentation

Additional information on the original implementation can be found at https://issues.apache.org/jira
/browse/NUTCH-1434

IndexerStatus errors
(IndexingFilter)

Total count of errors which occurred
during execution of the indexing
filtering and normalization chain.

Both filtering and normalization are deactivated by default in IndexingJob but can be activated by
providing the and flags respectively to the IndexerJob CLI.-filter -normalize

This metric is useful for determining, for example, the impacts that changes to an indexing filtering
/normalization chain are having on URLs ultimately being indexed. A higher count means that
something is wrong.

POSSIBLE IMPROVEMENT: It could be useful to record the fact that URL filtering and/or
normalization processes resulted in an error for a given record. This could possibly be stored in the
relevant datum/metadata container.

POSSIBLE IMPROVEMENT: Additionally, although URL filtering and normalization happens in both
Map and Reduce phases of a job, this metric is only implemented in the Reduce phase. We need to
determine if we want to extend this metric to also cover the Map phase of IndexingJob.

POSSIBLE IMPROVEMENT: Finally, we need to determine whether this is a general metric we wish
to capture for any job where filtering and normalization takes place.

http://indexer.delete.skipped.by
http://indexer.delete.skipped.by
https://github.com/apache/nutch/blob/master/src/bin/crawl
https://lists.apache.org/thread/5stc2z7v8w0b91v8qfgd9lz1t4so2t84
https://lists.apache.org/thread/5stc2z7v8w0b91v8qfgd9lz1t4so2t84
https://lists.apache.org/thread/5stc2z7v8w0b91v8qfgd9lz1t4so2t84
https://lists.apache.org/thread/5stc2z7v8w0b91v8qfgd9lz1t4so2t84
https://developers.google.com/search/docs/advanced/crawling/block-indexing
https://issues.apache.org/jira/browse/NUTCH-1434
https://issues.apache.org/jira/browse/NUTCH-1434

IndexerStatus errors
(ScoringFilter)

Total count of errors which occurred
during execution of the scoring
filtering chain.

This metric is useful for determining, for example, the impacts that changes to an indexing scoring
chain are having on URLs ultimately being indexed. A higher count means that something is wrong.

Scoring is always executed during the indexing reduce phase. Scoring implementations are initially
configured in the configuration property of nutch-default.xml however their order of plugin.includes
execution is based on the following configuration property

scoring.filter.order

<property>
 <name>scoring.filter.order</name>
 <value></value>
 <description>The order in which scoring filters
are applied. This
 may be left empty (in which case all available
scoring filters will
 be applied in system defined order), or a space
separated list of
 implementation classes.
 </description>
</property>

Some scoing plugins have specific settings in nutch-default.xml which should be consulted prior and
during execution and use in production deployments.

POSSIBLE IMPROVEMENT: Finally, we need to determine whether this is a general metric we wish
to capture for any job where scoring takes place.

IndexerStatus indexed (add
/update)

Total count of records successfully
indexed or updated by the indexing
backend.

This metric is literally the last thing which is counted within the IndexingJob reduce phase. When
combined with other metrics it can be used to provide an overall understanding of indexing results.

IndexerStatus skipped
(IndexingFilter)

Total count of records skipped
/filtered by indexing filters.

Note the similarity to above however in this case the documents are not deleted (IndexingFilter)
deleted from the indexing backend.

IndexerStatus skipped (not
modified)

Total count of records skipped with a
db_notmodified status i.e., that the pa
ge was successfully fetched and
found not modified.

This configuration property is deactivated by default but it can be activated either by providing the -para
 flag to the IndexerJob CLI or editing it in nutch-default.xml as ms indexer.skip.notmodified=true

shown below

indexer.skip.notmodified

<property>
 <name>indexer.skip.notmodified</name>
 <value>false</value>
 <description>Whether the indexer will skip
records with a db_notmodified status.
 </description>
</property>

Inject
or

injector urls_filtered Total count of new seed URLs
filtered by the Injector.

URL normalization and then filtering operations are executed within the Injector Map task(s). They are
both turned off by default in however if these values are not interpreted the Injector nutch-default.xml
turns normalization and filtering operations on by default.

This metric is useful to determine the impact that normalization and filtering have on the injection of
seeds contained within seed lists. For more information on configuration see

Normalization and Filtering

<property>
 <name>crawldb.url.normalizers</name>
 <value>false</value>
 <description>
 !Temporary, can be overwritten with the
command line!
 Normalize URLs when updating crawldb
 </description>
</property>

<property>
 <name>crawldb.url.filters</name>
 <value>false</value>
 <description>
 !Temporary, can be overwritten with the
command line!
 Filter URLS when updating crawldb
 </description>
</property>

injector urls_injected Total count of seed URLs injected by
the Injector.

The total number of URLs in the seed file or directory passed as seed input to the Injector.

injector urls_injected_
unique

Total count of unique seeds URLs
injected by the Injector.

The total number of URLs in the seed file or directory passed as seed input to the Injector. If unique
the seed files include duplicates, the value of this counter differs from that of .urls_injected

The difference between and is the number of how many URLs the urls_injected_unique urls_merged
CrawlDb has grown by the end of an Injector invocation.

injector urls_merged Total count of unique seed URLs
merged with an existing CrawlDatum
record.

This metric is useful for seeing how many existing URL records were affected by a given seed list
within the Injector reduce task(s). Several configuration settings are used to determine what those
affects are...

URLs merging in Injector

<property>
 <name>db.injector.overwrite</name>
 <value>false</value>
 <description>Whether existing records in the
CrawlDB will be overwritten
 by injected records.
 </description>
</property>

<property>
 <name>db.injector.update</name>
 <value>false</value>
 <description>If true existing records in the
CrawlDB will be updated with
 injected records. Old meta data is preserved.
The db.injector.overwrite
 parameter has precedence.
 </description>
</property>

You should also consult the as it adequately describes Injector.InjectorReducer#reduce documentation
the Injector merging algorithm.

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/Injector.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/crawl/Injector.java
https://ci-builds.apache.org/job/Nutch/job/Nutch-trunk/javadoc/org/apache/nutch/crawl/Injector.InjectReducer.html#reduce(org.apache.hadoop.io.Text,java.lang.Iterable,org.apache.hadoop.mapreduce.Reducer.Context)

injector urls_purged_4
04

Total count of URLs deleted/purged
due to an existing CrawlDatum STAT.
US_DB_GONE

If turned on, 404 purging occurs during the Injector Map task(s). It relies on the following configuration
property

db.update.purge.404

<property>
 <name>db.update.purge.404</name>
 <value>false</value>
 <description>If true, updatedb will add purge
records with status DB_GONE
 from the CrawlDB.
 </description>
</property>

The metric is useful for understanding how many seed URLs are already known to be essentially dead
links.

POSSIBLE IMPROVEMENT: The property description above needs to be updated to accommodate
usage of this property in Injector.

injector urls_purged_fil
ter

Total count of existing CrawlDatum
records filtered by one or more filters
and/or normalizers during the
Injector execution.

Not to be confused with similar metric This configuration setting can only be urls_filtered above.
activated in the Injector Map phase by passing the flag on the command-line.-filterNormalizeAll

Pars
eSeg
ment

ParserStatus mParseStatus.
ajorCodes
[parseStatus.g

()]etMajorCode

Total individual record counts of
major parse status i.e., , notparsed s
uccess and .failed

This metric is really useful for determining total counts of generic parse status' particularly as it
provides insight into parsing failures. For a given media type within a given dataset or crawl cycle we
can better understand what kind of input data results in parse failures and then begin to work to debug
why and provide fixes.

This metric is generated during the Map phase of the ParseSegment tool.

POSSIBLE IMPROVEMENT: Create a composite key which includes both the major parse status and
minor parse status. An example could be or similar. Minor parse status' failed:FAILED_TRUNCATED
are documented in .ParseStatus.java#L50-L84

Queu
eFee
der

FetcherStatus filtered Total count of URLs which were filter
ed or failed to normalize within
Fetcher queue feeding thread(s).

The QueueFeeder feeds queues with input items, and re-fills them as items are consumed by
FetcherThread-s. This metric is useful for quantifying how many records were filtered or normalized
during that process particularly if changes are made to the URL filter(s) or normalizer(s) chain.

By default filtering and normalization are deactivated during Fetcher execution however they can be
activated by editing the following configuration properties.

Normalizer and Filtering URLs in Fetcher

<property>
 <name>fetcher.filter.urls</name>
 <value>false</value>
 <description>Whether fetcher will filter URLs
(with the configured URL filters).</description>
</property>

<property>
 <name>fetcher.normalize.urls</name>
 <value>false</value>
 <description>Whether fetcher will normalize URLs
(with the configured URL normalizers).<
/description>
</property>

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/parse/ParseSegment.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/parse/ParseSegment.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/parse/ParseSegment.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/parse/ParseStatus.java#L50-L84
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/QueueFeeder.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/QueueFeeder.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/fetcher/QueueFeeder.java

(also
QueueFeed
er)

FetcherStatus AboveExceptio
nThresholdInQ
ueue

The total count of URLs purged
across all fetch queues as a result of
the maximum number of protocol-
level exceptions (e.g. timeouts) per
queue being exceeded.

!! Also see the same metric below generated by the FetcherThread. !!

This metric is useful for quantifying the number of URLs shelved for future fetching due to anomalies
occurring during fetcher execution exceeding a predefined ceiling.

Although by default the Fetcher e.g. the configuration is set to , if never enforces this behaviour -1
this is changed then this total count will become a useful metric to track. Further information on the
configuration parameter can be seen below

fetcher.max.exceptions.per.queue

<property>
 <name>fetcher.max.exceptions.per.queue</name>
 <value>-1</value>
 <description>The maximum number of protocol-
level exceptions (e.g. timeouts) per
 host (or IP) queue. Once this value is reached,
any remaining entries from this
 queue are purged, effectively stopping the
fetching from this host/IP. The default
 value of -1 deactivates this limit.
 </description>
</property>

POSSIBLE IMPROVEMENT: It could be useful to record the fact that a URL was staged due to it
being hit by the exception limit. Additionally, it could be useful to write metadata to all URLs which
contributed towards the limit being met. This could possibly be stored in the CrawlDatum metadata.

Reso
lverT
hread

UpdateHostDb checked_hosts Total count of hosts which have
essentially been checked and exist
/resolve.

This metric is useful for determining hosts which are able to be resolved through a call to InetAddress.
Hosts which do not resolve will through an Exception and are then handled getByName(host).

appropriately and covered in one of the accompanying HostDb metrics below.

This metric value should be a combined total of all other ResolverThread metric counts.

Also see for logic regarding whether a host UpdateHostDbReducer# ()shouldCheck HostDatum datum
should be checked or not.

UpdateHostDb existing_know
n_host

Total count of existing known hosts
which exist/resolve.

Simply a total count of host which were previously contained within the HostDb.

UpdateHostDb existing_unkno
wn_host

The total count of existing hosts
which should been forgotten.

This metric can be used to inform downstream purging operations. A host is marked with this counter if
either the configuration property value below is less than the number of DNS attempt failures or of the
configuration property value is deactivated (set to a value of -1).

hostdb.purge.failed.hosts.threshold

<property>
 <name>hostdb.purge.failed.hosts.threshold</name>
 <value>3</value>
 <description>
 If hosts have more failed DNS lookups than
this threshold, they are
 removed from the HostDB. Hosts can, of course,
return if they are still
 present in the CrawlDB.
 </description>
</property>

As stated in the configuration above it may also be prudent to consult the CrawlDb if the desired
outcome is for this Host to NOT enter back into the HostDb.

UpdateHostDb new_known_h
ost

Total count of brand new hosts for
which no HostDatum exists.

This metric is useful for understanding how the HostDb is growing over time.

UpdateHostDb new_unknown
_host

Total count of new unknown hosts
which do not exist/resolve.

If somehow the host does not exist/resolve and we've never encountered it before e.g. it is a new host
and the HostDatum is empty, then it is initialized with date = ${today's date and time} and the DNS
failure field of the records HostDatum is incremented by 1.

This is useful for tracking anbd informing downstream conditional logic based on new hosts which do
not resolve upon discovery.

UpdateHostDb purged_unkno
wn_host

The total count of existing hosts
which should been forgotten and
ultimately purged.

This metric is is useful for tracking previously undiscovered hosts which ultimately don't resolve/exist.

UpdateHostDb rediscovered_
host

Total count of existing hosts which
have experienced a DNS failure(s).

The metric is useful for quantifying how many hosts are having DNS issues. This might be useful if you
wish to normalize and/or filter these hosts. Alternatively you may also for example wish to contact the
host webmasters indicating that their DNS issues have been detected.

UpdateHostDb Long.toString(
datum.numFail

()) ures + _tim"
es_failed"

Count groupings of DNS and
connection failures for each Host in
the HostDb.

This metric is usful for determining whether there are some hosts which have been failing a significant
number of times for action to be taken. For example, if a Host DNS lookup has failed 6 times would
you wish to keep trying or simply purge it and ensure it is filtered in the future as early as possible in
the crawl cycle.

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/ResolverThread.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/ResolverThread.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/ResolverThread.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbReducer.java#L405-L429

Site
map
Proc
essor

Sitemap existing_sitem
ap_entries

Total count of sitemap entries
already present in the CrawlDb that
have been overwritten with new
sitemap data.

This metric is used to quantify, for records already present in crawldb, new CrawlDatum data. This
happens if the same URL is obtained from a new sitemap, and we have activated overwriting of
sitemaps. The information from the new sitemap overwrites the original datum essentially emitting the
original crawl datum.

The overwriting feature is deactivated by default but can be activatd in nutch-site.xml as below.

sitemap.url.overwrite.existing

<property>
 <name>sitemap.url.overwrite.existing</name>
 <value>false</value>
 <description>
 If true, the record's existing modified time,
interval and score are
 overwritten by the information in the sitemap.
WARNING: overwriting
 these values may have unexpected effects on
what is crawled. Use this
 only if you can trust the sitemap and if the
values in the sitemap do
 fit with your crawler configuration.
 </description>
</property>

Sitemap failed_fetches Total count of sitemaps for which
fetching failed.

If there were any problems fetching the sitemap, we log the error and let it go. This metric may
fluxuate depending on the following configuration property value in nutch-default.xml

sitemap.redir.max

<property>
 <name>sitemap.redir.max</name>
 <value>3</value>
 <description>
 Maximum number of redirects to follow.
 </description>
</property>

 As of writing we are not sure how oftenPOSSIBLE IMPROVEMENT: sitemaps are redirected. For
example do more complex redirect scenarios exis than simple http >> https? In the future we might
have to handle redirects differently.

Sitemap filtered_records Total count of filtered and/or
normalized sitemaps.

Filter and normalizing are both activated within the SitemapProcessor by default however either can
be deactivated by using the i and -noFilter -noNormalize flags on the SitemapProcessor CLI or editing
the configuration property values in nutch-site.xml as below

Sitemap filtering and normalizing

<property>
 <name>sitemap.url.filter</name>
 <value>true</value>
 <description>
 Filter URLs from sitemaps.
 </description>
</property>

<property>
 <name>sitemap.url.normalize</name>
 <value>true</value>
 <description>
 Normalize URLs from sitemaps.
 </description>
</property>

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/SitemapProcessor.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/SitemapProcessor.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/SitemapProcessor.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/SitemapProcessor.java

Sitemap filtered_sitema
ps_from_hostn
ame

Total count of filtered and/or
normalized sitemaps generated from
hosts in the HostDb.

On some occasions robots.txt will not define a sitemap.xml location but that doesn't mean one doesn't
exist. Sometimes a sitemap can be inferred from only the host which is one of the compelling reasons
as to why a HostDb is extremely useful. For more details see SitemapProcessor#generateSitemapsFro

.mHostname(String host, Context context)

Filter and normalizing are both activated within the SitemapProcessor by default however either can
be deactivated by using the i and -noFilter -noNormalize flags on the SitemapProcessor CLI or editing
the configuration property values in nutch-site.xml as below

Sitemap filtering and normalizing

<property>
 <name>sitemap.url.filter</name>
 <value>true</value>
 <description>
 Filter URLs from sitemaps.
 </description>
</property>

<property>
 <name>sitemap.url.normalize</name>
 <value>true</value>
 <description>
 Normalize URLs from sitemaps.
 </description>
</property>

Sitemap new_sitemap_
entries

Total count of brand new sitemap
entries added to the CrawlDb.

For the newly discovered URLs we acquire via sitemap, the CrawlDatum status is set as unfetched
and the record is emitted to the CrawlDb.

Sitemap sitemaps_from
_hostname

Total count of sitemaps generated
from hosts contained in the HostDb.

In direct oppose to filtered_sitemaps_from_hostname this metric is useful for quantifying how many
sitemaps were actually inferred from only the host. This metric could be used, for example, to inform
webmasters that they should add a sitemap.xml location to their robots.txt.

Sitemap sitemap_seeds Total count of sitemaps which were
injected as seeds.

This metric is useful for calculating the difference between sitemaps which were injected vs sitemaps
inferred from hosts in the HostDb. If sitemaps were injected via passing the flag into the -sitemapUrls
SitemapProcessor CLI then they will be processed from an existing as opposed to being CrawlDatum
inferred from a recored present in the HostDb.

Upda
teHo
stDb
Map
per

UpdateHostDb filtered_records Total count of records filtered within
an update to the HostDb.

Useful for determining the impact that filtering and normalization plugins and associated rules have on
the resulting HostDb. See the following configuration properties

hostdb.url.filter and hostdb.url.normalize

<property>
 <name>hostdb.url.filter</name>
 <value>false</value>
 <description>
 Whether the records are to be passed through
configured filters.
 </description>
</property>

<property>
 <name>hostdb.url.normalize</name>
 <value>false</value>
 <description>
 Whether the records are to be passed through
configured normalizers.
 </description>
</property>

This value can also be overridden on the command line with the and flags.-filter -normalize

Upda
teHo
stDb
Redu
cer

UpdateHostDb total_hosts Total count of all hosts processed in
one HostDb update.

Useful when considered alongside other metrics to determine the overall impact that configuration,
such as filtering or skipping, has on processing of hosts contained within the HostDb.

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/SitemapProcessor.java#L189-L224
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/util/SitemapProcessor.java#L189-L224
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbMapper.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbMapper.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbMapper.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbMapper.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbMapper.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbReducer.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/hostdb/UpdateHostDbReducer.java

(also
UpdateHost
DbReducer)

UpdateHostDb skipped_not_e
ligible

Total count of records skipped within
an update to the HostDb.

Records are skipped if the flag is used whilst invoking the tool AND it is a new Host -checkNew
(meaning that the HostDatum is empty). Also see the following configuration property

hostdb.check.new

<property>
 <name>hostdb.check.new</name>
 <value>true</value>
 <description>
 True if newly discovered hosts eligible for
DNS lookup check. If false,
 hosts that are just added to the HostDB are
not eligible for DNS lookup.
 </description>
</property>

Web
Graph

WebGraph.
outlinks

added links Total count of links which will
ultimately be used in WebGraph
scoring.

Useful metric to indicate how many links are essentially used within the scoring process.

(also
WebGraph)

WebGraph.
outlinks

removed links Total count of GONE pages not used
in Webgraph scoring.

Useful metric to indicate presence of gone/404 records which are not used within the scoring process.

WAR
CExp
orter

WARCExport
er

exception Total count of and/or IOException Ille
galStateException's caught during
tool execution.

These Exception's occur in the WARCExporter Reduce task(s) and if they do it is convenient to can
count them. They can arise when attempting to write records with a WARCWritable value.

WARCExport
er

invalid URI Total count of invalid entries with an
invalid WARC-Target-URI

These Exception's occur in the WARCExporter Reduce task(s) and if they do it is convenient to can
count them. This metric is essentially indicating that an Exception was raised and caught as a result of
an invalid WARC-Target-URIi for some given record.

WARCExport
er

missing
content

Total count of records with missing
(null) content.

These Exception's occur in the WARCExporter Reduce task(s) and if they do it is convenient to can
count them.

POSSIBLE IMPROVEMENT: Providing traceability to the individual record would enable debugging of
why content is null.

WARCExport
er

missing
metadata

Total count of records with missing
(null) CrawlDatum metadata.

These Exception's occur in the WARCExporter Reduce task(s) and if they do it is convenient to can
count them.

POSSIBLE IMPROVEMENT: Providing traceability to the individual record would enable debugging of
why CrawlDatum metadata is null.

WARCExport
er

omitted empty
response

Total count of records not written
because they have empty
responses.

This setting can be turned on via the command line with the i flag. If it is -onlySuccessfulResponses
turned on it means that records with the CrawlDatum status' not STATUS_FETCH_SUCCESS or STAT

 will not be written as they areUS_FETCH_NOTMODIFIED irregular responses.

WARCExport
er

records
generated

Total count of WARC records
successfully exported written.

A useful metric when combined with other counts as it provides a more comprehensive understanding
of data quality i.e., missing and or incomplete data.

Conclusion
This document aims to provide a detailed account of Nutch application metrics such that a data-driven approach can be adopted to better manage Nutch
operations. Several cells in the column in the above table offer areas for . These suggestions are USAGE AND COMMENTS POSSIBLE IMPROVEMENT
targeted towards Nutch crawler administrators and developers interested in evolving/improving Nutch metrics.

https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/scoring/webgraph/WebGraph.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/scoring/webgraph/WebGraph.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/tools/warc/WARCExporter.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/tools/warc/WARCExporter.java
https://github.com/apache/nutch/blob/master/src/java/org/apache/nutch/tools/warc/WARCExporter.java

	Metrics

