KIP-807: Refactor KafkaStreams exposed metadata
hierarchy

Status

Motivation

Public Interfaces

Proposed Changes

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status

Current state: "Under Discussion”
Discussion thread: here
JIRA: KAFKA-12370

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Currently, there are different methods in Kaf kaSt r eans that expose different type of Metadata classes. Several use cases exists in which a user would
need to retrieve all, or several, of the different Metadata classes.

At the moment of this KIP, we have the following Metadata classes:

St r eansMet adat a
TaskMet adat a

Thr eadMet adat a
KeyQuer yMet adat a

And the Kaf kaSt r eans API has the following methods:

met adat aFor Local Thr eads, which returns a set of Thr eadMet adat a

quer yMet adat aFor Key, which returns a KeyQuer yMet adat a

st reansMet adat aFor St or e, which returns a set of St r eansMet adat a

met adat aFor Al | St reansd i ent s, which returns a set of St r eansMet adat a

L]
L]
L]
L]
The motivation of this KIP is to simplify the API, by creating a hierarchy of the Metadata classes and consistently returning the one in the top level.
Reasoning for the new hierarchy of the Metadata classes (taken from the Jira issue):
® StreansMet adat a represent the metadata for the client, which includes the set of ThreadMetadata for its existing thread and the set of
TaskMetadata for active and standby tasks assigned to this client, plus client metadata including hostinfo, embedded client ids.
®* Thr eadMet adat a includes name, state, the set of TaskMetadata for currently assigned tasks.
® TaskMet adat a includes the name (including the sub-topology id and the partition id), the state, the corresponding sub-topology description
(including the state store names, source topic names).
® KeyQuer yMet adat a could be deprecated and instead use a combination of the previous ones.
As described in the Jira task:
> To illustrate as an example, to find out who are the current active host / standby hosts of a specific store, we would call streamsMetadataForStore, and

for each returned StreamsMetadata we loop over their contained TaskMetadata for active / standby, and filter by its corresponding sub-topology's
description's contained store name.

Public Interfaces

Deprecate methods in Kaf kaSt r eans returning metadata classes that are not St r eans Met adat a, and create new ones with similar semantics that
would return St r eansMet adat a .

org.apache.kafka.streams.KafkaStreams

public class KafkaStreans inplenents Autod oseabl e {

https://lists.apache.org/thread/zvhxvbmb85p28kc9lk8bf9omf1rzovmh
https://issues.apache.org/jira/browse/KAFKA-12370

| **

* Finds the netadata containing the active hosts and standby hosts where the key being queried woul d

* @aram st or eNanme the {@ode storeNane} to find netadata for
* @ar am key the key to find netadata for

* @aram keySerializer serializer for the key

* @aram <K> key type

* Returns {@ink KeyQueryMetadata} containing all netadata about hosting the given key for the given store,
* or {@ode null} if no matching netadata could be found.
* @leprecated since 3.2.0. Use {@ink #netadataForKey(String, Cbject, Serializer)} instead.

*/
@epr ecat ed
public <K> KeyQueryMet adat a quer yMet adat aFor Key(final String storeNang,
final K key,
final Serializer<K> keySerializer) {
}
/**

* Finds the netadata containing the active hosts and standby hosts where the key being queried woul d
reside.

* @aram st or eName the {@ode storeNane} to find netadata for

* @ar am key the key to find netadata for

* @arampartitioner the partitioner to be use to locate the host for the key
* @aram <K> key type

* Returns {@ink KeyQueryMetadata} containing all netadata about hosting the given key for the given
store, using the

* the supplied partitioner, or {@ode null} if no matching nmetadata coul d be found.

* @leprecated since 3.2.0. Use {@ink #netadataForKey(String, Cbject, StreanPartitioner)} instead.

*/
@epr ecat ed
public <K> KeyQueryMet adata queryMet adat aFor Key(final String storeNang,
final K key,
final StreanPartitioner<? super K, ?> partitioner) {
}
/**

* Finds the netadata containing the active hosts and standby hosts where the key being queried woul d
reside.

* @aram st or eName the { @ode storeNane} to find netadata for
* @ar am key the key to find netadata for
* @aram keySerializer serializer for the key
* @aram <K> key type
* Returns a collection of {@ink StreansMetadata} containing all netadata about hosting the given key for
the given
* store, or {@ode null} if no matching nmetadata coul d be found.
*/
public <K> Col | ection<StreansMet adat a> net adat aFor Key(final String storeNane,
final K key,

final Serializer<K> keySerializer) {

}

/**
* Finds the netadata containing the active hosts and standby hosts where the key being queried woul d
reside.

* @ar am st or eNanme the { @ode storeNane} to find netadata for

* @aram key the key to find netadata for

* @arampartitioner the partitioner to be use to locate the host for the key

* @aram <K> key type

* Returns a collection {@ink StreansMetadata} containing all netadata about hosting the given key for the
gi ven

* store, using the the supplied partitioner, or {@ode null} if no matching netadata could be found.
*/

public <K> Col | ecti on<St reansMet adat a> net adat aFor Key(final String storeNane,
final K key,
final StreanPartitioner<? super K, ?> partitioner) {

/**
* Returns runtine information about the local threads of this {@ink KafkaStreans} instance.
*
* @eturn the set of {@ink ThreadMetadata}.
* @leprecated since 3.2.0. Use {@ink #l ocal Metadata()} instead.

*/

@epr ecat ed

publ i c Set <Thr eadMet adat a> net adat aFor Local Threads() {
}

/**

* Returns netadata about the |ocal {@ode KafkaStreans} instance.

* Note: this is a point intime viewand it may change due to partition reassignnment.
*

* @eturn {@ink StreamsMetadata} for this |local {@ode KafkaStreans} instance.

*/

public StreansMetadata | ocal Metadata() {

}

Extend the St r eans Met adat a API to include Thr eadMet adat a and TasksMet adat a.

org.apache.kafka.streams.StreamsMetadata

/**

* Metadata of a Kafka Streans client.
*/

public interface StreansMetadata {

| **

*

* @eturn netadata of this client threads
*/
Set <Thr eadMet adat a> t hr eadMet adat a() ;

| *x*

* Metadata of all active tasks assigned to this client.
*

* @eturn nmetadata of the active tasks
*/
Set <TaskMet adat a> acti veTasks();

| **

* Metadata of all standby tasks assigned to this client.

*

* @eturn netadata of the standby tasks

*/
Set <TaskMet adat a> st andbyTasks();

Extend TaskMet adat a API to include the state and the store of given task.

org.apache.kafka.streams.TaskMetadata

public interface TaskMetadata {

| **

* State of the given task

*

* @eturn a String representing the task state
*

/
String state();

| *x*

* Nanmes of the state stores assigned to the given task

*

* @eturn names of the state stores assigned to the given task
*/

Set <String> stateStoreNanmes();

Deprecate KeyQuer yMet adat a class in favour of using St r eansMet adat a and TaskMet adat a.

org.apache.kafka.streams.KeyQueryMetadata

/**

* Represents all the netadata related to a key, where a particular key resides in a {@ink KafkaStreans}
application.

* |t contains the active {@ink HostInfo} and a set of standby {@ink Hostlnfo}s, denoting the instances where
the key resides.

* |t also contains the partition nunmber where the key bel ongs, which could be useful when used in conjunction
with other APIs.

* e.g: Relating with lags for that store partition.

* NOTE: This is a point in time view It may change as rebal ances happen.

* @leprecated since 3.2.0. Use {@ink StreansMetadata instead}

*/

@Depr ecat ed

public class KeyQueryMetadata {

}

Proposed Changes

St r eansMet adat a will become the central and principal class in when it comes to retrieving metadata for Streams. Through this class, one will be able

to access all relevant metadata (streams, tasks and threads ones). As described before, changes for this class include adding sets for its Thr eadMet adat ¢
, and TaskMet adat a sets for its active and standby tasks.

TaskMet adt a class will be extended to include the task's state and the stores assigned to the given task.

To keep compatibility, old methods in Kaf kaSt r eans returni ng Set <Thr eadMeadat a> and KeyQuer yMet adat a will be deprecated (and deleted
in subsequent releases), while new methods returning Set <St r eansMet adat a> will be introduced.

The deprecated methods are only used, at the moment, within the test classes or internal classes which can be safely migrated and rewritten to use the
newly introduced methods.

The internal StreamsMetadataState can be safely cleaned by removing usages of KeyQuer yMet adat a.

Compatibility, Deprecation, and Migration Plan

Changes are source compatible as old methods and classes are only deprecated and not deleted. Deprecated methods will be deleted in subsequent
releases.

List of actions users would need to take to migrate to this version:
® Users of St r eanms#keyQuer yMet adat aFor Key should migrate to St r eans#net adat aFor Key

O Subsequently, using St r eansMet adt a and its full API instead of the deprecated KeyQuer yMet adat a
® Users of St r eans#net adat aFor Local Thr eads should migrate to St r eans#l| ocal Met adat a

Rejected Alternatives

No rejected alternative at the moment.

	KIP-807: Refactor KafkaStreams exposed metadata hierarchy

