
KIP-859: Add Metadata Log Processing Error Related
Metrics

Status
Motivation
Public Interfaces
Proposed Changes

Controllers
Brokers

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: https://lists.apache.org/thread/yl87h1s484yc09yjo1no46hwpbv0qkwt

JIRA: - KAFKA-14114 Getting issue details... STATUS

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
 changes the way cluster metadata is stored and managed in a Kafka cluster. It KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum

introduces the concept of a replicated log that is maintained using a custom version of the Raft consensus protocol described in KIP-595: A Raft Protocol
. The controller now utilizes this log to persist and broadcast all metadata related actions in the cluster as described in for the Metadata Quorum KIP-631:

.The Quorum-based Kafka Controller

With these changes in place, the replicated log containing all metadata changes (henceforth called metadata log) is the source of metadata related
information for all nodes in the cluster. Any errors that occur while processing the log could lead to the in-memory state for the node becoming
inconsistent. It is important that such errors are made visible. The metrics proposed in the following section aim at doing so. These metrics can be used to
set up alerts so that affected nodes can be discovered and needed remedial actions can be performed on them.

Public Interfaces
We propose adding the following new metrics:

Name Description

kafka.server:type=broker-metadata-
metrics,name=metadata-apply-error-count

Reports the number of errors encountered by the while BrokerMetadataPublisher
applying a new based on the latest .MetadataImage MetadataDelta

kafka.server:type=broker-metadata-
metrics,name=metadata-load-error-count

Reports the number of errors encountered by the while loading BrokerMetadataListener
the metadata log and generating a new based on it.MetadataDelta

kafka.controller:type=KafkaController,
name=MetadataErrorCount

Reports the number of times this controller node has encountered an error during metadata
log processing

Proposed Changes

Controllers

The metric is update for both active and standby controllers. For Active Controllers it is incremented anytime they hit an error in MetadataErrorCount
either generating a Metadata log or while applying it to memory. For standby controllers, this metric is incremented when they hit an error in applying the
metadata log to memory. This metric will reflect the total count of errors that a controller encountered in metadata log processing since the last restart.

https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/metadata/src/main/java/org/apache/kafka/controller
 /QuorumController.java#L409

https://lists.apache.org/thread/yl87h1s484yc09yjo1no46hwpbv0qkwt
https://issues.apache.org/jira/browse/KAFKA-14114
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller
https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller
https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/metadata/src/main/java/org/apache/kafka/controller/QuorumController.java#L409
https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/metadata/src/main/java/org/apache/kafka/controller/QuorumController.java#L409

handleEventException

 private Throwable handleEventException(String name,
 OptionalLong startProcessingTimeNs,
 Throwable exception) {
 if (!startProcessingTimeNs.isPresent()) {
 ...
 ...
 renounce();
 //**** Increment MetadataErrorCount
 return new UnknownServerException(exception);
 }

Brokers

The metric will be incremented by one every time there is an error in publishing a new . This metric metadata-apply-error-count MetadataImage
will reflect the count of cumulative errors since the broker started up.

https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata
/BrokerMetadataPublisher.scala#L125

Publish

override def publish(delta: MetadataDelta, newImage: MetadataImage): Unit = {
 val highestOffsetAndEpoch = newImage.highestOffsetAndEpoch()

 try {
 trace(s"Publishing delta $delta with highest offset $highestOffsetAndEpoch")

 // Publish the new metadata image to the metadata cache.
 metadataCache.setImage(newImage)
 ...
 ...
 publishedOffsetAtomic.set(newImage.highestOffsetAndEpoch().offset)
 } catch {
 //**** Increment metadata-apply-error-count
 case t: Throwable => error(s"Error publishing broker metadata at $highestOffsetAndEpoch", t)
 throw t
 } finally {
 _firstPublish = false
 }
 }

The metric will be incremented every time there is an error in loading batches and generating from metadata-load-error-count MetadataDelta
them. This metric will reflect the count of cumulative errors since the broker started up.

https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataListener.
scala#L112

https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataPublisher.scala#L125=
https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataPublisher.scala#L125=
https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataListener.scala#L112
https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataListener.scala#L112

HandleCommitsEvent

class HandleCommitsEvent(reader: BatchReader[ApiMessageAndVersion])
 extends EventQueue.FailureLoggingEvent(log) {
 override def run(): Unit = {
 val results = try {
 val loadResults = loadBatches(_delta, reader, None, None, None)
 ...
 loadResults
 } catch {
 //**** Increment metadata-load-error-count
 } finally {
 reader.close()
 }

 ...
 _publisher.foreach(publish)
 }
 }

https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataListener.
scala#L162

HandleSnapshotEvent

 class HandleSnapshotEvent(reader: SnapshotReader[ApiMessageAndVersion])
 extends EventQueue.FailureLoggingEvent(log) {
 override def run(): Unit = {
 try {
 info(s"Loading snapshot ${reader.snapshotId().offset}-${reader.snapshotId().epoch}.")
 _delta = new MetadataDelta(_image) // Discard any previous deltas.
 val loadResults = loadBatches(
 ...
 } catch {
 //**** Increment metadata-load-error-count
 } finally {
 reader.close()
 }
 _publisher.foreach(publish)
 }
 }

Compatibility, Deprecation, and Migration Plan
These will be newly exposed metrics and there will be no impact on existing kafka versions.

Rejected Alternatives
Instead of adding the specific metrics, we could have added a more generic MetadataProcessingErrorCount Metric which would be incremented when
either of these (and any other similar) or any other similar errors are hit on both Brokers and Controllers. The downside to this approach would be the loss
in granularity on what exactly failed on a given node. The specific metrics are more meaningful and give better control over any alarming that might be
setup on these metrics.

https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataListener.scala#L162
https://github.com/apache/kafka/blob/14d2269471141067dc3c45300187f20a0a051777/core/src/main/scala/kafka/server/metadata/BrokerMetadataListener.scala#L162

	KIP-859: Add Metadata Log Processing Error Related Metrics

