
JumpStart Demo

 JavaScript

Related Articles

Legacy JavaScript
Ajax and Zones
TypeScript
JavaScript Modules
Client-Side JavaScript
CoffeeScript
JavaScript FAQ
Ajax Components FAQ

 Component Cheat Sheet
Assets

Legacy JavaScript

JavaScript is a first-class concept in Tapestry, and sophisticated JavaScript support is provided right out of the box, including rich , Ajax and Zones
download optimization, client-side logging, and localization.

In production mode, by default, Tapestry will merge JavaScript libraries, add version numbering, and set a far-future
expires header to encourage aggressive browser caching. Starting with version 5.3, Tapestry can also automatically
minify (compress) JavaScript libraries when in .production mode

In addition, as will be described in detail , Tapestry comes with the and libraries, or you below Prototype Scriptaculous
can easily swap in JQuery using a 3rd-party module.

Adding Custom JavaScript
When adding your own custom JavaScript or third-party libraries, just follow the strategies below to take advantage of
Tapestry's JavaScript support mechanisms.

The recommended practice in Tapestry is to package up any significant amount of JavaScript as a static JavaScript library, a .js file that can be
downloaded to the client. Keep your in-page JavaScript code to a minimum, just the few statements needed to initialize objects and reference methods in
the JavaScript libraries.

Linking to your JavaScript libraries

Tapestry provides several ways to add a link to a JavaScript library within your page or component. Although you can use direct <script type="text
 approach, you should only use it for JavaScript that resides outside of your application. For JavaScript /javascript" src="xxx.js"></script>

within your app, Tapestry provides better ways to do the same thing. Most users choose the simplest, the @Import annotation approach.much

Approach 1: @Import

Use the @ annotation (or @ in Tapestry 5.0 and 5.1) to include links to JavaScript (and CSS) files in Import IncludeJavaScriptLibrary
your page or component. Tapestry ensures that each such file is only referenced once in your page.

For Tapestry 5.2 and later

@Import(library={"context:js/jquery.js",
 "context:js/myeffects.js"})
public class MyComponent
{
 . . .
}

For Tapestry 5.0 and 5.1

@IncludeJavaScriptLibrary(value={"context:js/jquery.js",
 "context:js/myeffects.js"})
public class MyComponent
{
 . . .
}

@Import may also be applied to individual methods, in which case the import operation only occurs when the method is invoked.

Note: When specifying a file to import, you'll often use the binding prefix to indicate that the file is stored in the web application context, and not context:
on the classpath. Relative paths will be on the classpath, relative to the Java class. See for other binding prefix options.Component Parameters

For Older Versions of Tapestry

This page describes JavaScript usage in Tapestry versions up through 5.3.x. For version 5.4 and later, see .Client-Side JavaScript

http://jumpstart.doublenegative.com.au/jumpstart/examples/javascript/javascript
https://cwiki.apache.org/confluence/display/TAPESTRY/Ajax+and+Zones
https://cwiki.apache.org/confluence/display/TAPESTRY/TypeScript
https://cwiki.apache.org/confluence/display/TAPESTRY/JavaScript+Modules
https://cwiki.apache.org/confluence/display/TAPESTRY/Client-Side+JavaScript
https://cwiki.apache.org/confluence/display/TAPESTRY/CoffeeScript
https://cwiki.apache.org/confluence/display/TAPESTRY/JavaScript+FAQ
https://cwiki.apache.org/confluence/display/TAPESTRY/Ajax+Components+FAQ
https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Cheat+Sheet
https://cwiki.apache.org/confluence/display/TAPESTRY/Assets
https://cwiki.apache.org/confluence/display/TAPESTRY/Ajax+and+Zones
https://cwiki.apache.org/confluence/display/TAPESTRY/Configuration#Configuration-tapestry.production-mode
http://www.prototypejs.org/
http://script.aculo.us/
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Import.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/IncludeJavaScriptLibrary.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Parameters
https://cwiki.apache.org/confluence/display/TAPESTRY/Client-Side+JavaScript

JumpStart Demo

 Reusable JavaScript

Adding the same JavaScript library multiple times does create duplicate links. The subsequent ones are simply ignored. In this way, each component not
can add the libraries it needs, without worrying about conflicts with other components.

Approach 2: JavaScriptSupport

Alternatively, you can use (for Tapestry 5.2 or later) or RenderSupport (for Tapestry 5.0 and 5.1) to include a JavaScript library in your JavaScriptSupport
page or component. JavaScriptSupport and RenderSupport are that include a number of methods that will be used by components, environmental services
or by services that are called from components. For example:

The methodimportJavaScriptLibrary

The method (or for Tapestry 5.0 and 5.1) adds a link to a JavaScript library. A component can inject importJavaScriptLibrary addScriptLink
such a script and pass one or more of assets to this method:

Tapestry 5.2 and later

 @Inject @Path("context:/js/myeffects.js")
 private Asset myEffects;

 @Environmental
 private JavaScriptSupport javaScriptSupport;

 void setupRender()
 {
 javaScriptSupport.importJavaScriptLibrary(myEffects);
 }

Tapestry 5.1 and earlier

 @Inject @Path("context:/js/myeffects.js")
 private Asset myEffects;

 @Environmental
 private RenderSupport renderSupport;

 void setupRender()
 {
 renderSupport.addScriptLink(myEffects);
 }

Tapestry will ensure that the necessary <link> elements are added to the of the document (in the <head> element). With Tapestry 5.3 and later the top
new elements are inserted at the bottom of the <head> element; in versions before 5.3 they appear at the top of the <head> element).

As with the annotation approach, adding the same asset multiple times does create duplicate links.not

The method (the name is specifically linked to a) is the correct place to inform the JavaScriptSupport (or RenderSupport) setupRender render phase
service that the library is needed.

The methodaddScript

The method is used when you need to add some JavaScript code directly to the page. This will be inserted at the addScript bott
, and will only be executed when the document has finished loading on the client (i.e., from the window.onload om of the document

event handler).

Tapestry 5.2 and later

void afterRender()
{
 javaScriptSupport.addScript(
 "$('%s').observe('click', hideMe());",
 container.getClientId());
}

http://jumpstart.doublenegative.com.au/jumpstart/examples/javascript/reusable
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/javascript/JavaScriptSupport.html

Tapestry 5.1 and earlier

void afterRender()
{
 javaScriptSupport.addScript(String.format(
 "$('%s').observe('click', hideMe());",
 container.getClientId()));
}

When calling the method, the format string can include standard substitutions (such as '%s') for arguments. This saves you the trouble of calling String.
format() yourself. (For Tapestry 5.1 and earlier, you must call String.format() yourself.) In any case, the formatted JavaScript is added to the script block in
the rendered output.

Injecting JavaScriptSupport

JavaScriptSupport (like RenderSupport before it) is an object, so you will normally inject it via the @ annotation:environmental Environmental

For Tapestry 5.2 and later

 @Environmental
 private JavaScriptSupport javaScriptSupport;

For Tapestry 5.0 and 5.1

 @Environmental
 private RenderSupport renderSupport;

The @Environmental annotation only works inside components, but occasionally you may want to inject JavaScriptSupport (or RenderSupport) into a
service. Fortunately, a proxy has been set up to allow the use of @Inject instead:

For Tapestry 5.2 and later

 @Inject
 private JavaScriptSupport javaScriptSupport;

For Tapestry 5.0 and 5.1

 @Inject
 private RenderSupport renderSupport;

... or, in a service implementation constructor:

For Tapestry 5.2 and later

 public MyServiceImpl(JavaScriptSupport support)
 {
 . . .
 }

For Tapestry 5.0 and 5.1

 public MyServiceImpl(RenderSupport support)
 {
 . . .
 }

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Environmental.html

Inside a component, you should use @Environmental, to highlight the fact that RenderSupport (like most environmental objects) is only available during
rendering, not during action requests.

Combining JavaScript libraries

In production mode, Tapestry automatically JavaScript libraries. A single request (for a) will retrieve the combined content of all combines virtual asset
referenced JavaScript library files.

Note: starting with Tapestry 5.2, JavaScript libraries are only combined if they are part of a JavaScript Stack (see below).

This is a very useful feature, as it reduces the number of requests needed to present a page to the user. It can be disabled, however, by setting the
SymbolConstants.COMBINE_SCRIPTS to false in your application's module class (normally AppModule.java). By default it is configuration symbol
enabled when in production mode and disabled otherwise.

As elsewhere, if the client browser supports gzip compression, the combined JavaScript will be compressed.

Minifying JavaScript libraries

In production mode, Tapestry can automatically (intelligently compresses) JavaScript libraries (and CSS) when the application starts up. This can minify
significantly decrease the size of static content that the browser needs to download.

Minification is accomplished using the ResourceMinimizer service. A YUI Compressor-based implementation is available, but this can be overridden.

IMPORTANT NOTE: The tapestry-core module only provides the empty infrastructure for supporting minification; the actual logic is supplied in the tapestry-
yuicompressor module. To use it, you'll need to update your dependencies to include this module.

Maven pom.xml (partial)

<dependency>
 <groupId>org.apache.tapestry</groupId>
 <artifactId>tapestry-yuicompressor</artifactId>
 <version>${tapestry-release-version}</version>
</dependency>

Gradle would be similar, of course. If you aren't using something like Maven or Gradle, you'll have to download the jar and its dependency (com.yahoo.
platform.yui: yuicompressor) yourself.

Minification can be disabled by setting the to false in your application's module class (usually AppModule.tapestry.enable-minification configuration symbol
java). By default it is enabled when in production mode and disabled otherwise.

Please test your applications well: the YUI Compressor code can be somewhat finicky about the application server and JDK version.

Client-side Logging

In versions prior to 5.3, Tapestry used a modified version of the Blackbird JavaScript console. The Tapestry object includes three functions: debug, warn
and error.

Added in 5.1.0.2

Added in 5.3

Deprecated since 5.3

https://cwiki.apache.org/confluence/display/TAPESTRY/Configuration#Configuration-tapestry.enable-minification

Each of these functions take a message and an optional pattern; if the pattern is provided, the message is interpolated on the pattern. The final message is
displayed in the Blackbird console, which will make itself visible automatically.

In production mode, debug messages will be filtered out (they will not be visible until the user presses F2 to display the console, and then clicks the grayed
out icon for debug messages). In development mode, debug messages are not filtered out.

Example usage:

 Tapestry.debug("Field id is #{id}, value is #{value}", field);

 Tapestry.error("Server is not available.");

With Tapestry 5.3 and later the Blackbird console has been removed; just use the standard console logging features (e.g.) built into console.log()
modern browsers.

Handling Slow Page Loads
If your page loads slowly (typically, because of scripts loaded from external sites), you may see a race condition where the user can click on a link before
an event handler for that link has been wired up.

The client-side function can be used in an element's onclick handler to force a wait for the page to fully load. In this race Tapestry.waitForPage()
condition, the screen will dim and a message will appear advising the user to wait a moment; once the page is fully loaded, this modal dialog will be
removed.

The correct usage is:

 ...

The constant contains the part of this snippet inside the quotes.MarkupConstants.WAIT_FOR_PAGE

The Standard Tapestry Library
Tapestry's client-side support, the standard Tapestry library, consists of , which has dependencies on Prototype and on Scriptaculous tapestry.js
Effects. tapestry.js, along with its dependencies. The tapestry.js library is automatically added to the page when your code adds any other JavaScript or
JavaScript library.

Tapestry Namespace

Tapestry defines a number of object and classes inside the Tapestry namespace.

It also adds a handful of methods to the Form class, and to Form elements. These are mostly related to input validation and determining element visibility.

The Tapestry Object $T()

The standard library adds a new function, . This function is used much like Prototype's , except that instead of returning a DOM object, it returns a $T() $()
hash (an initially empty JavaScript object) that is associated with the DOM object. This hash is known as .the Tapestry object

You may pass in an object id (as a string) or an object reference. The Tapestry Object is created on first invocation. Note: you'll see it as a property name
_tapestry on the DOM object (which may be useful when debugging).

When Tapestry adds information to a DOM object, it does so in the Tapestry object. This helps avoid name conflicts, and groups all Tapestry-added
properties into one place which is much easier to debug.

For example, you might store a value for an element in one place:

 $T(myid).fadeDuration = .5;

Then use it somewhere else:

Deprecated since 5.2 (no replacement)

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/MarkupConstants.html

Alternatives to Prototype

Tapestry 5.4 includes the ability to switch
between Prototype and JQuery. For
Tapestry 5.3 and earlier, you also have
some options::

Tapestry5-Jquery module –
Using JQuery Prototypeinstead of
Tapestry5HowToIntegrateJQuery
– Using JQuery in addition to
Prototype
TAPS-1364 – lists some starting
points for ExtJS integration

 new Effect.Fade($(myId), { duration: $T(myid).fadeDuration });

Ajax Components and Mixins
Tapestry provides easy-to-use support for , the technique of using JavaScript to dynamically updating parts of a web page with content from the server Ajax
without redrawing the whole page. See for details.Ajax and Zones

Built-in Libraries

Tapestry 5.4 and earlier come with the and libraries ... no extra download is Prototype Scriptaculous
required. Tapestry will automatically link into your pages the prototype.js, scriptaculous.js, and effects.js
libraries, as well as the Tapestry library, tapestry.js (which largely consists of support for form input
validation). Starting with Tapestry 5.3, is also included.Underscore

Prototype and Scriptaculous Versions

Tapestry included only Prototype and Scriptaculous in versions prior to Tapestry 5.4. See Supported
 for a matrix of prototype and scriptaculous versions supported by Tapestry.Environments and Versions

In versions before 5.4, Tapestry used a modified version of the main Scriptaculous library, scriptaculous.js,
with the library's default behavior turned off. This lets Tapestry and Tapestry components autoloading
control which Scriptaculus scripts are loaded, rather than having of them loaded unnecessarily.all

If you need access to other Scriptaculous libraries, you can provide them as follows:

 @Inject @Path("${tapestry.scriptaculous}/dragdrop.js")
 private Asset dragDropLibrary;

 @Environmental
 private JavaScriptSupport javaScriptSupport;

 void setupRender()
 {
 javaScriptSupport.addScriptLink(dragDropLibrary);
 }

The Asset is injected, using the configuration symbol to reference the location of the Scriptaculous library.tapestry.scriptaculous

Even though the dragdrop.js library is stored inside a JAR file, Tapestry ensures that it can be accessed from the client web browser. A Tapestry URL
within the virtual folder "/assets" is created; the file will be given a version number (the application version number if not specified more specifically) and will
be sent to the browser with a far-future expires header (to encourage the browser to cache the file aggressively).

JavaScript Stacks

Tapestry allows you to define groups of related JavaScript libraries and stylesheets as "stacks". The built-in "core" stack is used to define the core
JavaScript libraries needed by Tapestry (currently, this includes Prototype and Scriptaculous, as well as Tapestry-specific libraries). Other component
libraries may define additional stacks for related sets of resources, for example, to bundle together some portion of the ExtJS or YUI libraries.

A can be thought of as a generalization of Tapestry 5.1's ClientInfrastructure, which exists now to define the "core" JavaScript stack.JavaScriptStack

JavaScript assets of a stack may (when enabled) be exposed to the client as a single URL (identifying the stack by name). The individual assets are
combined into a single virtual asset, which is then streamed to the client.

To group several static resources together in a single stack, you must create a new implementation of the JavaScriptStack interface . This interface has
four methods:

Added in 5.2

https://github.com/got5/tapestry5-jquery
http://wiki.apache.org/tapestry/Tapestry5HowToIntegrateJQuery
https://issues.apache.org/jira/browse/TAP5-1364
https://cwiki.apache.org/confluence/display/TAPESTRY/Ajax+and+Zones
http://www.prototypejs.org/
http://script.aculo.us/
http://documentcloud.github.com/underscore/
https://cwiki.apache.org/confluence/display/TAPESTRY/Supported+Environments+and+Versions
https://cwiki.apache.org/confluence/display/TAPESTRY/Supported+Environments+and+Versions
http://wiki.script.aculo.us/scriptaculous/show/Usage
https://cwiki.apache.org/confluence/display/TAPESTRY/Configuration#Configuration-tapestry.scriptaculous
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/javascript/JavaScriptStack.html

getStylesheets : This method will return a list of stylesheet files (StylesheetLink-type object) associated to this stack

getJavaScriptLibraries : This method will return a list of javascript files (Asset-type object) associated to this stack

getStacks : It is also possible to make a stack dependant of other stacks. All the stacks defined in this method will be loaded before the current
stack.

getInitialization : this method makes it possible to call a JavaScript initialization for the stack. Tapestry will automatically add this initialization to
the page that imports the stacks.

myStack.java

public class myStack implements JavaScriptStack {

 private final AssetSource assetSource;

 public myStack (final AssetSource assetSource)
 {
 this.assetSource = assetSource;
 }

 public String getInitialization()
 {
 return null;
 }

 public List<Asset> getJavaScriptLibraries()
 {
 List<Asset> ret = new ArrayList<Asset>();

 ret.add(assetSource.getContextAsset("static/js/jquery.js", null));

 ret.add(assetSource.getContextAsset("static/js/jquery.ui.core.js", null));

 return ret;
 }

 public List<StylesheetLink> getStylesheets()
 {
 List<StylesheetLink> ret = new ArrayList<StylesheetLink>();

 ret.add(new StylesheetLink(assetSource.getContextAsset("static/css/style.css", null)));

 return ret;
 }

 public List<String> getStacks()
 {
 return Collections.emptyList();
 }

}

When your new Stack is created, you have to define it in your AppModule.

AppModule.java (partial)

@Contribute(JavaScriptStackSource.class)
public static void addMyStack (MappedConfiguration<String, JavaScriptStack> configuration)
{
 configuration.addInstance("MyNewStack", myStack.class);
}

You can now use it in your pages and components, by using the @Import annotation or the JavaScriptSupport service :

With @Import

 @Import(stack="MyNewStack")
 public class myPage {
 }

With JavaScriptSupport

@Inject
private JavaScriptSupport js;

@SetupRender
public void importStack(){
 js.importStack("MyNewStack");
}

	Legacy JavaScript

