
Contents

Parameter Bindings
Binding Expressions
@Parameter annotation
Don't use the ${...} syntax!
Informal Parameters
Parameters Are Bi-Directional
Inherited Parameter Bindings
Computed Parameter Binding Defaults
Unbound Parameters
Parameter Type Coercion
Parameter Names
Determining if Bound
Publishing Parameters

Related Articles

Component Parameters
Component Templates

 Page And Component Classes FAQ
Default Parameter
Supporting Informal Parameters
Component Classes
Enum Parameter Recipe
Templating and Markup FAQ
Component Cheat Sheet

Component Parameters
Component parameters are the primary means for a component instance and its container to communicate with each other. Parameters are used to confi

 component instances.gure

In the following example, is a parameter of the component. The page parameter tells page pagelink
the pagelink component which page to go to when the user clicks on the rendered hyperlink:

<html xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">
 <t:pagelink page="Index">Go Home</t:pagelink>
</html>

A component may have any number of parameters. Each parameter has a specific name, a specific Java
type (which may be a primitive value), and may be or .optional required

Within a component class, parameters are declared by using the @ annotation on a private Parameter
field, as we'll see below.

Parameter Bindings
In Tapestry, a parameter is not a slot into which data is pushed: it is a between a field of the component (marked with the @Parameter connection
annotation) and a property or resource of the component's container. (Components can be nested, so the container can be either the page or another
component.)

The connection between a component and a property (or resource) of its container is called a .binding
The binding is two-way: the component can read the bound property by reading its parameter field.
Likewise, a component that updates its parameter field will update the bound property.

This is important in a lot of cases; for example a TextField component can read the and update
property bound to its value parameter. It reads the value when rendering, but updates the value
when the form is submitted.

The component listed below is a looping component; it renders its body a number of times, defined
by its and parameters (which set the boundaries of the loop). The component can update start end
a parameter bound to a property of its container; it will automatically count up or down result
depending on whether or is larger.start end

https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Templates
https://cwiki.apache.org/confluence/display/TAPESTRY/Page+And+Component+Classes+FAQ
https://cwiki.apache.org/confluence/display/TAPESTRY/Default+Parameter
https://cwiki.apache.org/confluence/display/TAPESTRY/Supporting+Informal+Parameters
https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Classes
https://cwiki.apache.org/confluence/display/TAPESTRY/Enum+Parameter+Recipe
https://cwiki.apache.org/confluence/display/TAPESTRY/Templating+and+Markup+FAQ
https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Cheat+Sheet
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Parameter.html

package org.example.app.components;

import org.apache.tapestry5.annotations.AfterRender;
import org.apache.tapestry5.annotations.Parameter;
import org.apache.tapestry5.annotations.SetupRender;

public class Count
{
 @Parameter (value="1")
 private int start;

 @Parameter(required = true)
 private int end;

 @Parameter
 private int result;

 private boolean increment;

 @SetupRender
 void initializeValues()
 {
 result = start;
 increment = start < end;
 }

 @AfterRender
 boolean next()
 {
 if (increment)
 {
 int newResult = value + 1;

 if (newResult <= end)
 {
 result = newResult;
 return false;
 }
 }
 else
 {
 int newResult= value - 1;
 if (newResult>= end)
 {
 result = newResult;
 return false;
 }
 }
 return true;
 }
}

The name of the parameter is the same as field name (except with leading "_" and "$" characters, if any, removed). Here, the parameter names are "start",
"end" and "result".

The component above can be referenced in another component or page , and its parameters :template bound

<html t:type="layout" xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">
 <p> Merry Christmas: <t:count end="3"> Ho! </t:count>
 </p>
</html>

The end attribute is used to the end parameter of the Count component. Here, it is being bound to the string value "3", which is automatically bind coerced
by Tapestry into the int value, 3.

Any number of parameters may be bound this way.

https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Templates
https://cwiki.apache.org/confluence/display/TAPESTRY/Type+Coercion

Component parameters may also be bound using the @ annotation inside the component class. (Where conflicts occur, the parameters bound Component
using the Component annotation will take precedence over parameter bindings in the template.)

Binding Expressions
The value inside the template, "3" in the previous example, is a .binding expression

By placing a prefix in front of the value, you can change how Tapestry interprets the remainder of the expression (the part after the colon):

Prefix Description

asset: The relative path to an asset file (which must exist)

block: The id of a block within the template

component: The id of another component within the same template

context: Context asset: path from context root

literal: A literal string

nullfieldstrategy: Used to locate a pre-defined NullFieldStrategy

message: Retrieves a string from the component's message catalog

prop: A to read or updateproperty expression

symbol: Used to read one of your symbols

translate: The name of a configured translator

validate: A used to create some number of field validatorsvalidator specification

var: Allows a render variable of the component to be read or updated

Most of these binding prefixes allow parameters to be bound to read-only values; for instance a parameter bound to "message:some-key" will see the
message for "some-key" from its container's message catalog in the field. If the component tries to update the parameter (by setting the value of the field),
a runtime exception will be thrown to indicate that the value is read-only.

Only prop: and var: binding prefixes are updateable (but you must use the ${..} syntax here; see the).not warning below

Each parameter has a default prefix, defined by the component, that is used when the prefix is not provided. The most common are "literal:" and "prop:".

A , "inherit:", is used to support .special prefix Inherited Parameter Bindings

Render Variables: Bindings

Components can have any number of . Render variables are named values with no specific type (they are ultimately stored in a Map). render variables
Render variables are useful for holding simple values, such as loop indices, that need to be passed from one component to another.

For example, the following template code:

 <li t:type="loop" source="1..10" value="index">${index}

and the following Java code:

@Property
private int index;

... could be rewritten as just:

 <li t:type="loop" source="1..10" value="var:index">${var:index}

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Component.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/NullFieldStrategy.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Localization
https://cwiki.apache.org/confluence/display/TAPESTRY/Property+Expressions
https://cwiki.apache.org/confluence/display/TAPESTRY/Symbols

In other words, you don't have to define a property in the Java code. The disadvantage is that render variables don't work with the property expression
syntax, so you can pass around a render variable's but you can't reference any of the value's properties.value

Render variables are automatically cleared when a component finishes rendering.

Render variable names are case insensitive.

Property: Bindings

Main Article: Property Expressions

The "prop:" binding prefix indicates a property expression binding.

Property expressions are used to link a parameter of a component to a property of its container. Property expressions can navigate a series of properties
and/or invoke methods, as well as several other useful patterns.

The default binding prefix in most cases is "prop:", which is why it is usually omitted.

Validate: Bindings

Main Article: Forms and Validation

The "validate:" binding prefix is highly specialized. It allows a short string to be used to create and configure the objects that perform input validation for
form control components, such as TextField and Checkbox.

The string is a comma-separated list of . These are short aliases for objects that perform the validation. In many cases, the validation is validator types
configurable in some way: for example, a validator that enforces a minimum string length needs to know what that minimum string length is. Such values
are specified after an equals sign.

For example: would presumably enforce that a field requires a value, and with at least five characters.validate:required,minLength=5

Translate: Bindings

The "translate:" binding prefix is also related to input validation. It is the name of a configured , responsible for converting between server-side Translator
and client-side representations of data (for instance, between client-side strings and server-side numeric values).

The list of available translators is configured by the service.TranslatorSource

Asset: Bindings

Main Article: Assets

Assets bindings are used to specify , static content served by Tapestry. By default, assets are located relative to the component Component Parameters
class in your packaged application or module. This can be overridden by prefixing the path with "context:", in which case, the path is a context path from
the root of the web application context. Because accessing context assets is relatively common, a separate "context:" binding prefix for that purpose exists
(described below).

Context: Bindings

Main Article: Assets

Context bindings are like asset bindings, but the path is relative to the root of the web application context. This is intended for use inside templates, always
i.e.:

Tapestry will adjust the URL of the image so that it is processed by Tapestry, not the servlet container. It will gain a URL that includes the application's
version number, it will have a far-future expires header, and (if the client supports it) its content will be compressed before being sent to the client.

@Parameter annotation

Required Parameters

Parameters that are required be bound. A runtime exception occurs if a component has unbound required parameters.must

https://cwiki.apache.org/confluence/display/TAPESTRY/Property+Expressions
https://cwiki.apache.org/confluence/display/TAPESTRY/Forms+and+Validation
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/Translator.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/TranslatorSource.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Assets
https://cwiki.apache.org/confluence/display/TAPESTRY/Assets

public class Component{

 @Parameter(required = true)
 private String parameter;

}

Optional Parameters

Parameters are optional unless they are marked as required.

You may set a default value for optional parameters using the element of the @Parameter annotation. In the Count component above, the start value
parameter has a default value of 1. That value is used unless the start parameter is bound, in which case, the bound value supersedes the default.

Parameter Binding Defaults

The @Parameter annotation's element can be used to specify a that will be the default binding for the parameter if otherwise left value binding expression
unbound. Typically, this is the name of a property that that will compute the value on the fly.

@Parameter(value="defaultMessage") // or, equivalently, @Parameter("defaultMessage")
private String message;

@Parameter(required=true)
private int maxLength;

public String getDefaultMessage(){
 return String.format("Maximum field length is %d.", maxLength);
}

As elsewhere, you may use a prefix on the value. A common prefix to use is the "message:" prefix, to access a localized message.

Parameter Caching

Reading a parameter value can be marginally expensive (because of type coercion). Therefore, it makes sense to cache the parameter value, at least
while the component is actively rendering itself.

In rare cases, it is desirable to defeat the caching; this can be done by setting the cache() attribute of the @Parameter annotation to false.

Don't use the ${...} syntax!
Main Article: Expansions

You generally should use the Template Expansion syntax, ${...}, within component parameter bindings. Doing so results in the property inside the not
braces being converted to an (immutable) string, and will therefore result in a runtime exception if your component needs to update the value (whenever
the default or explicit binding prefix is or , since such component parameters are bindings).prop: var: two-way

This is right

<t:textfield t:id="color" value="color"/>

This is wrong

<t:textfield t:id="color" value="${color}"/>

Sometimes a parameter is marked as required, but may still be omitted if the underlying value is provided by some other means. This is the
case, for example, with the Select component's value parameter, which may have its underlying value set by contributing a ValueEncoderSource
. Be sure to read the component's parameter documentation carefully. Required simply enables checks that the parameter is bound, it does not
mean that you must supply the binding in the template (or @Component annotation).

https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Templates#ComponentTemplates-Expansions
https://cwiki.apache.org/confluence/display/TAPESTRY/Using+Select+With+a+List

The general rule is, only use the ${...} syntax in non-Tapestry-controlled locations in your template, such as in attributes of ordinary HTML elements and in
plain-text areas of your template.

This is right

This is wrong

Informal Parameters
Main Article: Supporting Informal Parameters

Many components support , additional parameters beyond the formally defined parameters. Informal parameters will be rendered into informal parameters
the output as additional attributes on the tag rendered by the component. Generally speaking, components that have a 1:1 relationship with a particular
HTML tag (such as <TextField> and <input> will support informal parameters.

Only components whose class is annotated with @ will support informal parameters. Tapestry silently drops informal SupportsInformalParameters
parameters that are specified for components that do not have this annotation.

Informal parameters are often used to set the CSS class of an element, or to specify client-side event handlers.

The default binding prefix for informal parameters depends on the parameter binding is specified. If the parameter is bound inside a Java class, where
within the @ annotation, then the default binding prefix is "prop:". If the parameter is bound inside the component template, then the default Component
binding prefix is "literal:". This reflects the fact that a parameter specified in the Java class, using the annotation, is most likely a computed value, whereas
a value in the template should simply be copied, as is, into the result HTML stream.

Informal parameters (if supported) are always rendered into the output they are bound to a property whose value is null. If the bound property is null unless
then the parameter will be present at all in the rendered output.not

If your component should render informal parameters, just inject the for your component and invoke the ComponentResources renderInformalParamet
 method. See for an example of how to do this.ers() Supporting Informal Parameters

Parameters Are Bi-Directional
Parameters are not simply variables; each parameter represents a connection, or , between a component and a property of its container. When binding
using the prop: binding prefix, the component can force changes a property of its container, just by assigning a value to its own instance variable.into

<t:layout xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">
 <p> Countdown:
 <t:count start="5" end="1" result="index">
 ${index} ...
 </t:count>
 </p>
</t:layout>

Because the Count component updates its result parameter (the field), the index property of the containing component is updated. Inside the result
Count's body, we output the current value of the index property, using the expansion }. The resulting output will look something like:${index

 <p> Countdown: 5 ... 4 ... 3 ... 2 ... 1 ... </p>

(Though the whitespace will be quite different.)

The relevant part is that components can read fixed values, or properties of their container, and can properties of their container as well.live change

Inherited Parameter Bindings
A special prefix, "inherit:" is used to identify the name of a parameter of the containing component. If the parameter is bound in the containing component,
then it will be bound to the same value in the embedded component.

https://cwiki.apache.org/confluence/display/TAPESTRY/Supporting+Informal+Parameters
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/SupportsInformalParameters.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Component.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ComponentResources.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Supporting+Informal+Parameters

If the parameter is not bound in the containing component, then it will not be bound in the embedded component (and so, the embedded component may
use a default binding).

Inherited bindings are useful for complex components; they are often used when an inner component has a default value for a parameter, and the outer
component wants to make it possible to override that default.

Index.tml

<html xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">
 <body>
 <div t:type="layout" t:menuTitle="literal:The Title">
 ...
 </div>
 </body>
</html>

Layout.tml

<t:container xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">

 <div t:type="title" t:title="inherit:menuTitle"></div>

 <t:body />

</t:container>

Title.java

package org.example.app.components;

import org.apache.tapestry5.annotations.Parameter;

public class Title {

 @Parameter
 private String title;

}

Computed Parameter Binding Defaults
In cases, you may want to compute the binding to be used as a parameter default. In this case, you will provide a , a method rare default binding method
that takes no parameters. The returned value is used to bind the parameter. The return value may be a instance, or it may be a simple value Binding
(which is more often the case).

The method name is "default" plus the capitalized name of the parameter.

Using this approach, the previous example may be rewritten as:

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/Binding.html

 @Parameter
 private String message;

 @Parameter(required=true)
 private int maxLength;

 @Inject
 private ComponentResources resources;

 @Inject
 private BindingSource bindingSource;

 Binding defaultMessage()
 {
 return bindingSource.newBinding("default value", resources, "basicMessage");
 }

 public String getBasicMessage()
 {
 return String.format("Maximum field length is %d.", maxLength);
 }

In this example, a property expression, "basicMessage", is used to access the message dynamically.

Alternately, the previous example may be written even more succinctly as:

 @Parameter
 private String message;

 @Parameter(required=true)
 private int maxLength;

 @Inject
 private ComponentResources resources;

 String defaultMessage()
 {
 return String.format("Maximum field length is %d.", maxLength);
 }

This form is more like using the "literal:" binding prefix, except that the literal value is computed by the defaultMessage() method.

Obviously, this is a lot more work than simply specifying a default value as part of the @Parameter annotation. In the few real cases where this is
approach is used, the default binding method will usually deduce a proper binding, typically in terms of the component's id. For example, the TextField
component will deduce a value parameter that binds to a property of its container with the same name.

A default binding method will be invoked if the @Parameter annotation does not provide a default value.only

Unbound Parameters
If a parameter is not bound (and is optional), then the value may be read or at any time.updated

Updates to unbound parameters cause no side effects. In the first example, the value parameter of the Count component is not bound, and this is perfectly
valid.

Note: updates to such fields are temporary; when the component , the field will revert to its default value.finishes rendering

Parameter Type Coercion
Main Article: Parameter Type Coercion

Tapestry includes a mechanism for . Most often, this is used to convert literal strings into appropriate values, but in many coercing types automatically
cases, more complex conversions will occur. This mechanism is used for component parameters, such as when an outer component passes a literal string
to an inner component that is expecting an integer.

You can easily for your own purposes.contribute new coercions

https://cwiki.apache.org/confluence/display/TAPESTRY/Parameter+Type+Coercion
https://cwiki.apache.org/confluence/display/TAPESTRY/Type+Coercion

Parameter Names
By default, Tapestry converts from the field name to the parameter name, by stripping off leading "$" and "_" characters.

This can be overridden using the name() attribute of the @Parameter annotation.

Determining if Bound
In rare cases, you may want to take different behaviors based on whether a parameter is bound or not. This can be accomplished by querying the
component's resources, which can be into the component using the @ annotation:injected Inject

public class MyComponent
{
 @Parameter
 private int myParam;

 @Inject
 private ComponentResources componentResources;

 @BeginRender
 void setup()
 {
 if (componentResources.isBound("myParam"))
 {
 . . .
 }
 }
}

The above sketch illustrates the approach. Because the parameter type is a primitive type, int, it is hard to distinguish between no binding, and binding
explicitly to the value 0.

The @Inject annotation will inject the for the component. These resources are the linkage between the Java class you provide, and ComponentResources
the infrastructure Tapestry builds around your class. In any case, once the resources are injected, they can be queried.

Publishing Parameters
Often when creating new components from existing components, you want to expose some of the functionality of the embedded component, in the form of
exposing parameters of the embedded components as parameters of the outer component.

In Tapestry 5.0, you would define a parameter of the outer component, and use the "inherit:" binding prefix to connect the inner component's parameter to
the outer component's parameter. This is somewhat clumsy, as it involves creating an otherwise unused field just for the parameter; in practice it also
leads to duplication of the documentation of the parameter.

In Tapestry 5.1 and later, you may use the publishParameters attribute of the @ annotation. List one or more parameters separated by Component
commas: those parameters of the inner/embedded component become parameters of the outer component. You should define a parameter field in the not
outer component.

ContainerComponent.tml

<t:container xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">
<t:pageLink t:id="link">Page Link</t:pageLink>
</t:container>

ContainerComponent.java

public class ContainerComponent{
 @Component(id="link", publishParameters="page")
 private PageLink link;
}

https://cwiki.apache.org/confluence/display/TAPESTRY/Injection
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/Inject.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ComponentResources.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Component.html

Index.tml

<t:ContainerComponent t:id="Container" t:page="About" />

There are still cases where you want to use the "inherit:" binding prefix. For example, if you have several components that need to share a parameter, then
you must do it the Tapestry 5.0 way: a true parameter on the outer component, and "inherit:" bindings on the embedded components. You can follow a
similar pattern to rename a parameter in the outer component.

Property Expressions User Guide Parameter Type Coercion

https://cwiki.apache.org/confluence/display/TAPESTRY/Property+Expressions
https://cwiki.apache.org/confluence/display/TAPESTRY/Property+Expressions
https://cwiki.apache.org/confluence/display/TAPESTRY/User+Guide
https://cwiki.apache.org/confluence/display/TAPESTRY/User+Guide
https://cwiki.apache.org/confluence/display/TAPESTRY/Parameter+Type+Coercion
https://cwiki.apache.org/confluence/display/TAPESTRY/Parameter+Type+Coercion

	Component Parameters

