
Tapestry Requests vs. Container Requests

The Tapestry filter matches all the requests
that apply to Tapestry, and passes the rest off
to the servlet container. In situations where
there would be a naming conflict, actual files
inside the web application take precedence
over Tapestry pages.

Tapestry recognizes the , where the root URL
servlet path is simply "/", and renders the
application page "Index", if it exists.

Related Articles

Tapestry IoC Configuration
Response Compression
Symbols

 Application Module Class Cheat Sheet
 IoC cookbook - Service Configurations

Configuration

Configuration

Configuring Tapestry
This page discusses all the ways in which Tapestry can be configured. Tapestry applications are
configured almost entirely using Java, with very little XML at all.

Contents

XML configuration (web.xml)
Your Application's Module Class
Configuration Symbol Names
Setting Component Parameter Defaults
Configuring Ignored Paths
Configuring Content Type Mapping
Setting Execution Modes
Segregating Applications Into Folders

XML configuration (web.xml)

Tapestry runs on top of the standard Java Servlet API. To the servlet container, such as Tomcat, Tapestry appears as a . This gives Tapestry servlet filter
great flexibility in matching URLs without requiring lots of XML configuration.

Although most configuration is done with Java, a small but necessary amount of configuration occurs inside the servlet deployment descriptor, WEB-INF
/web.xml. Most of the configuration is boilerplate, nearly the same for all applications.

web.xml (partial)

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>My Tapestry Application</display-name>
 <context-param>
 <param-name>tapestry.app-package</param-name>
 <param-value>org.example.myapp</param-value>
 </context-param>
 <filter>
 <filter-name>app</filter-name>
 <filter-class>org.apache.tapestry5.TapestryFilter</filter-class>
 <!-- Or org.apache.tapestry5.http.TapestryFilter if you're using tapestry-http without tapestry-core -->
 </filter>
 <filter-mapping>
 <filter-name>app</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

The application-specific part, the context parameter, provides your tapestry.app-package
application's root package name. Tapestry uses this to locate your page and component classes. It
expects page classes in the sub-package and components in the sub-package. In pages components
the example above, page classes will be stored in the package (or in sub-org.example.myapp.pages
packages below). Likewise, component classes will be stored in the org.example.myapp.components
package.

By convention, the filter name () is almost always "app", but you can use any name you filter-name
want. Tapestry uses this to determine what name to look for (see below).module class

Your Application's Module Class

Main Article: Tapestry IoC Configuration

https://cwiki.apache.org/confluence/display/TAPESTRY/Tapestry+IoC+Configuration
https://cwiki.apache.org/confluence/display/TAPESTRY/Response+Compression
https://cwiki.apache.org/confluence/display/TAPESTRY/Symbols
https://cwiki.apache.org/confluence/display/TAPESTRY/Application+Module+Class+Cheat+Sheet
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook+-+Service+Configurations
https://cwiki.apache.org/confluence/display/TAPESTRY/Tapestry+IoC+Configuration

Most other configuration occurs inside your application's module class. The application module class will often define new services, provide overrides of
services, or make contributions to service configurations.

Tapestry looks for your application module class in the services package (under the root package) of your application. It capitalizes the <filter-name> and
appends "Module". In the previous example, because the filter name was "app" and the application's root package name is "org.example.myapp", the
module class would be org.example.myapp.services.AppModule.

If such a class exists, it is added to the IoC Registry. It is not an error for your application to not have a module class, though any non-trivial application will
have one.

Your application module class (usually AppModule.java) will typically override some of Tapestry's default, or "factory", symbols, by contributing overrides to
the ApplicationDefaults service configuration. For example:

AppModule.java

public class AppModule
{
 public static void contributeApplicationDefaults(MappedConfiguration<String,String> configuration)
 {
 configuration.add(SymbolConstants.SUPPORTED_LOCALES, "en,fr,de");
 configuration.add(SymbolConstants.FILE_CHECK_INTERVAL, "10 m");
 }
}

Configuration Symbol Names

Main Article: Symbols

Many of Tapestry's built-in services (some of which are not even public) are configured via symbols. These symbols can be overridden by contributing to
the ApplicationDefaults service configuration, or by placing a <context-param> element into the application's web.xml, or on the command line by defining
JVM System Properties with the -D command line option.

These symbols are always defined in terms of strings, and those strings are coerced to the appropriate type (a number, a boolean, etc.). Of special note
are , which are specified in a .time intervals particular format

Most of these symbols have a constant defined in the class, while others are in the class. Those are noted in below. SymbolConstants IOCSymbols bold
Use the symbol name (tapestry.*) for JVM System Properties with the -D option, and use the constant (in bold below) from within your Java classes (e.g.
AppModule.java).

tapestry.app-catalog

SymbolConstants.APPLICATION_CATALOG – The location of the global application message catalog, the default is context:WEB-INF/ .app-name
properties.

tapestry.application-version

SymbolConstants.APPLICATION_VERSION – The version of the application, which is incorporated into URLs for context and classpath assets in
Tapestry versions prior to 5.4. may be , and will have far-future expiration headers; they will be aggressively cached by the client web Assets compressed
browser. You should change the application version on each new deployment of the application (that is, any time assets in the context change), to force
clients to re-download changed versions of files. If you do not specify an application version, a one will be assigned on every deployment (which is random
good for development but very bad for production).

tapestry.application-folder

Added in 5.4

Added in 5.3

https://cwiki.apache.org/confluence/display/TAPESTRY/Symbols
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/util/TimeInterval.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/SymbolConstants.html
https://cwiki.apache.org/confluence/tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/IOCSymbols.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Assets
https://cwiki.apache.org/confluence/display/TAPESTRY/Response+Compression

SymbolConstants.APPLICATION_FOLDER – The folder, of the context, in which the Tapestry application executes. By default this is blank, meaning the
Tapestry application executes in the root of the web application context. Setting this value allows the Tapestry application to be , segregated into a folder
which can be useful when Tapestry is executed inside a web application with other servlets or filters.

tapestry.asset-url-fully-qualified

SymbolConstants.ASSET_URL_FULL_QUALIFIED – A boolean value to indicate whether URLs should be fully qualified in the rendered page. asset
This defaults to (not fully qualified).false

tapestry.asset-path-prefix

SymbolConstants.ASSET_PATH_PREFIX – The prefix to be used for all asset paths. This should start end with a slash ("/"). By default this is "and
/assets/".

tapestry.blackbird-enabled

SymbolConstants.BLACKBIRD_ENABLED – A flag (true or false). When "false" the Blackbird JavaScript console will be disabled (in Tapestry 5.2 and
newer). Defaults to "true".

tapestry.bootstrap-root

SymbolConstants.BOOTSTRAP_ROOT – The root asset path for Twitter Bootstrap; if your application uses a modified version of Bootstrap, you can
override this symbol to have Tapestry automatically use your version. The value should be a path to a folder (under "classpath:" or "context:") and should
not include a trailing slash.

tapestry.font-awesome-root

Added in 5.3

Added in 5.3.1

Deprecated since 5.3

The client-side BlackBird console has been removed.

Added in 5.4

Added in 5.5.0

SymbolConstants.FONT_AWESOME_ROOT – The root asset path for FontAwesome; if your application uses a modified version of it, you can override
this symbol to have Tapestry automatically use your version. The value should be a path to a folder (under "classpath:" or "context:") and should not
include a trailing slash.

tapestry.charset

SymbolConstants.CHARSET – The character encoding used when generating output (or parsing input). The default is "UTF-8". See Content Type and
 for more details.Markup

tapestry.clustered-sessions

SymbolConstants.CLUSTERED_SESSIONS – If "true" then at the end of each request the SessionPersistedObjectAnalyzer will be called on each
session persisted object that was accessed during the request. The default is "true", to preserve 5.2 behavior. For non-clustered applications (the majority),
this value should be overridden to "false".

tapestry.combine-scripts

SymbolConstants.COMBINE_SCRIPTS – If "true", then Tapestry will combine (or "aggregate") the individual JavaScript libraries within a JavaScript
stack; this reduces the number of requests from the client to the server, as the client can cache the combined JavaScript files locally (and will not need to
re-download them on subsequent pages). The implementation of this changed significantly between Tapestry 5.1 and 5.2.

Defaults to "true" in production mode.

tapestry.compact-json

SymbolConstants.COMPACT_JSON – If "true", then JSON page initialization content is compressed; if "false" then extra white space is added (pretty
printing). Defaults to "true" in production mode.

tapestry.compatibility.unknown-component-id-check-enabled

SymbolConstants.UNKNOWN_COMPONENT_ID_CHECK_ENABLED – When enabled, Tapestry will check that component ids referenced in event
handler method names (or the @OnEvent annotation) match up against components in the container's template. The default is true, but applications
upgraded form Tapestry 5.2 may want to set this to false, to keep pages from failing due to the presence of such dead code.

tapestry.component-render-tracing-enabled

Added in 5.3

Added in 5.2

Added in 5.3

Deprecated since 5.3

https://cwiki.apache.org/confluence/display/TAPESTRY/Content+Type+and+Markup
https://cwiki.apache.org/confluence/display/TAPESTRY/Content+Type+and+Markup

SymbolConstants.COMPONENT_RENDER_TRACING_ENABLED – Starting with version 5.3, if "true" then Tapestry will emit rendering comments for all
requests; these are comments (such as <!--BEGIN Index:loop (context:Index.tml, line 15)-->) that can assist you in debugging markup output on the client-
side. This will significantly increase the size of the rendered markup, but can be very helpful with complex layouts to determine which component was
responsible for which portion of the rendered page. (To turn on rendering comments only for a particular request, add the query parameter t:component-
trace=true to the URL.)

tapestry.compress-whitespace

SymbolConstants.COMPRESS_WHITESPACE – A flag (true or false). When true (the default) whitespace in component templates is compressed by
default (this can be fine-tuned using the standard xml:space attribute on an element in the template). When this flag is false, then whitespace is retained by
default (but can still be overridden). See for details.Component Templates

tapestry.module-path-prefix

SymbolConstants.MODULE_PATH_PREFIX – Prefix used for all module resources. This may contain slashes, but should not begin or end with one.
Tapestry will create two Dispatchers from this: one for normal modules, the other for GZip compressed modules (by appending ".gz" to this value).

tapestry.context-path

SymbolConstants.CONTEXT_PATH – Identifies the context path of the application, as determined from ServletContext.getContextPath() method. This is
either a blank string or a string that starts with a slash but does not end with one.

tapestry.datepicker

SymbolConstants.DATEPICKER – The path to the assets of the embedded DatePicker component

tapestry.default-cookie-max-age

SymbolConstants.COOKIE_MAX_AGE – The default time interval that cookies created by Tapestry will be kept in the client web browser. Primarily, this
is used with a cookie that exists to track the preferred user locale. The default value is "7 d" (7 days; see).Time Interval Formats

tapestry.default-stylesheet

SymbolConstants.DEFAULT_STYLESHEET – In 5.3, this is the default stylesheet automatically injected into every rendered HTML page. Many Tapestry
components assume that this stylesheet is available. All the classes defined in the stylesheet are prefixed with "t-". The exact contents of the stylesheet
are subject to change at any time (they are considered internal), so replacing the stylesheet, rather than overriding selected rules within it, entails some
risk.

Added in 5.4

Added in 5.4

Added in 5.2

Added in 5.3.6

https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Templates
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/util/TimeInterval.html

The default is org/apache/tapestry5/default.css, stored on the classpath.

Deprecated in 5.4 with no replacement. The stylesheet is now associated with the core JavaScriptStack.

Undeprecated in 5.5.0. The stylesheet defined by this symbol is needed when Tapestry is configured to not include Bootstrap at all.

tapestry.error-css-class

SymbolConstants.ERROR_CSS_CLASS – Defines the CSS class that will be given to the HTML element generated by the Error component. If the value
isn't , the class attributehelp-block
will be . The default value is .help-block [symbol value] help-block

tapestry.enable-html5-support

If "true", then certain HTML5 features are invoked by built-in Tapestry components. Mostly this SymbolConstants.ENABLE_HTML5_SUPPORT –
controls whether the TextField component will emit HTML5 "type" attributes automatically when certain validators are used. See for Forms and Validation
details. The default is false.

tapestry.enable-minification

SymbolConstants.MINIFICATION_ENABLED – If "true", then resources (individually or when aggregated into stacks) will be minimized via the
ResourceMinimizer service. If "false", then minification is disabled. The default is "true" in production mode, "false" otherwise.

Note that Tapestry's default implementation of ResourceMinimizer does nothing; minification is provided by add-on libraries. See for details.Assets

tapestry.enable-pageloading-mask

SymbolConstantsaENABLE_PAGELOADING_MASK – If true, then when a page includes any JavaScript, a block is added to insert a <script>
pageloader mask into the page to ensure that the user can't interact with the page until the page is fully initialized. The default is true.

tapestry.encode-locale-into-path

SymbolConstants.ENCODE_LOCALE_INTO_PATH – If "true" (the default), then the will be encoded into URLs by the PersistentLocale
ComponentEventLinkEncoder service. If overridden to "false" this does not occur, but you should provide a LinkCreationListener2 (registered with the
LinkCreationHub) in order to add the locale as a query parameter (or provide some alternate means of persisting the locale between requests). See Localiz

 for more details on localization.ation

Added in 5..5

Added in 5.4

Added in 5.3.6

Added in 5.4

https://cwiki.apache.org/confluence/display/TAPESTRY/Forms+and+Validation
https://cwiki.apache.org/confluence/display/TAPESTRY/Assets
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/PersistentLocale.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Localization
https://cwiki.apache.org/confluence/display/TAPESTRY/Localization

tapestry.exception-report-page

SymbolConstants.EXCEPTION_REPORT_PAGE – The name of the page used to report exceptions. This defaults to "ExceptionReport", a page that
Tapestry provides. See for details.Overriding Exception Reporting

tapestry.exception-reports-dir

 – The root directory where Tapestry's built-in OperationTracker will create dated folders into which it SymbolConstants.EXCEPTION_REPORTS_DIR
writes exception report files. This is by default but should be overridden for production. See the related build/exceptions tapestry.restrictive-

 symbol below.environment

tapestry.execution-mode

SymbolConstants.EXECUTION_MODE – The execution mode. See below.Setting Execution Modes

tapestry.file-check-interval

SymbolConstants.FILE_CHECK_INTERVAL – Time interval between file system checks. During a file system check, only a single thread is active (all
others are blocked) and any files loaded are checked for changes (this is part of Tapestry's mechanism).Class Reloading

The default is "1 s" (one second; see), and is usually overridden with a higher value in production (say, between one and five Time Interval Formats
minutes).

tapestry.file-check-update-timeout

SymbolConstants.FILE_CHECK_UPDATE_TIMEOUT – Time interval that Tapestry will wait to obtain the exclusive lock needed for a file check. If the
exclusive lock can't be obtained in that amount of time, the request will proceed normally (without the check), but each successive request will attempt to
get the lock and perform the check until successful.

The default is "50 ms" (50 milliseconds; see).Time Interval Formats

tapestry.force-absolute-uris

 – For Tapestry 5.0 and 5.1 onlySymbolConstants.FORCE_ABSOLUTE_URIS : when false (the default), Tapestry will attempt to optimize URIs that it
generates, using relative URIs when such URIs are shorter than absolute URIs. When true, all URIs will be absolute URIs (including the context path, and
the complete path for the request).

tapestry.gzip-compression-enabled

SymbolConstants.GZIP_COMPRESSION_ENABLED – Override to "false" to disable GZIP compression of dynamic Tapestry pages and static assets.

tapestry.hostname

Added in 5.4

Deprecated since 5.2

Starting in Tapestry 5.2, the optimization to generate relative URIs has been removed, and all URIs are always absolute. .Removed in 5.3

Added in 5.3

https://cwiki.apache.org/confluence/display/TAPESTRY/Overriding+Exception+Reporting
https://cwiki.apache.org/confluence/display/TAPESTRY/Class+Reloading
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/util/TimeInterval.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/util/TimeInterval.html

SymbolConstants.HOSTNAME – The hostname that application should use when constructing an absolute URL. The default is "", i.e. an empty string, in
which case system will use request.getServerName(). Not the same as environment variable HOSTNAME (but you could contribute "$HOSTNAME" as the
value to make it the same).

tapestry.hostport

SymbolConstants.HOSTPORT – The port that application should use when constructing an absolute URL. The default is "0", which means to use the
port value from the request.

tapestry.hostport-secure

SymbolConstants.HOSTPORT_SECURE – The secure (https) port that application should use when constructing an absolute URL. The default is "0", i.e.
use the value from the request.

tapestry.hmac-passphrase

SymbolConstants.HMAC_PASSPHRASE – The plaintext phrase used to set the key for securing of serialized object data. The default is blank, HMAC
which causes a runtime alert and console error. You should set this to a reasonably unique, private value, and ensure (in a cluster) that all servers use the
same value – typically by making a contribution in your applications module class (normally AppModule.java). See for details.Security

tapestry.include-core-stack

SymbolConstants.INCLUDE_CORE_STACK – Whether to include Tapestry's "core" stack of JavaScript libraries. The default is "true".

tapestry.javascript-infrastructure-provider

Added in 5.3

Added in 5.3

Added in 5.3.6

Added in 5.4

Added in 5.4

http://en.wikipedia.org/wiki/HMAC
https://cwiki.apache.org/confluence/display/TAPESTRY/Security

SymbolConstants.JAVASCRIPT_INFRASTRUCTURE_PROVIDER – Tapestry relies on an underlying client-side JavaScript infrastructure framework to
handle DOM manipulation, event handling, and Ajax requests. Prior to Tapestry 5.4, the foundation was . In 5.4 and later, support for has Prototype jQuery
been added, and it is possible to add others. This symbol defines a value that is used to select a resource that is provided to the ModuleManager service
as a JavaScriptModuleConfiguration to provide a specific implementation of the module. Tapestry 5.4 directly supports "prototype" or t5/core/dom
"jquery". To support other foundation frameworks, override this symbol value and supply your own module configuration.

In Tapestry 5.4, this defaults to "prototype" for compatibility with 5.3. This will likely change in 5.5 to default to "jquery". At some point in the future,
Prototype support may no longer be present.

tapestry.lenient-date-format

SymbolConstants.LENIENT_DATE_FORMAT – When set to true, the DateField component will be lenient about date calculations, for example allowing
a January 32 date as input and automatically converting it to February 1. When false (the default), only valid dates may be entered.

tapestry.min-gzip-size

SymbolConstants.MIN_GZIP_SIZE – The minimum stream size necessary for Tapestry to use GZIP compression on the response stream. See Response
 for more details.Compression

tapestry.omit-generator-meta

SymbolConstants.OMIT_GENERATOR_META – If "true", then the <meta> tag that Tapestry normally writes into the <head>, identifying the Tapestry
version, will be omitted. Use this when you do not wish to advertise your application's use of Tapestry.

tapestry.page-pool.active-window

The time interval that an instantiated page instance may be cached before being removed. As pages are returned to the pool, they are time stamped.
Periodically (as per the file check interval), the pool is scanned for page instances that have not been used recently; those that are outside the active
window are discarded. This is used to free up unnecessary page instances after a request surge. Starting in 5.2, this is only effective if tapestry.page-pool-
enabled is true.

The default is "10 m" (10 minutes; see).Time Interval Formats

tapestry.page-pool-enabled

Starting with Tapestry 5.2, page pooling has been turned off by default. This symbol lets you re-enable page pooling. Under most circumstances this
symbol should not be set. The disabling of page pooling starting in 5.2 significantly reduces heap memory usage and improves performance for most web
applications.

The default is "false".

tapestry.page-pool.hard-limit

Added in 5.4

Deprecated since 5.2

Starting in 5.2, this is only used if tapestry.page-pool-enabled is "true". Removed in 5.3

Deprecated since 5.2

Removed in 5.3.

Deprecated since 5.2

http://http//prototypejs.org/
http://jquery.org/
https://cwiki.apache.org/confluence/display/TAPESTRY/Response+Compression
https://cwiki.apache.org/confluence/display/TAPESTRY/Response+Compression
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/util/TimeInterval.html

The absolute maximum number of page instances (for a particular page name / locale combination) that Tapestry will create at any time. If this number is
reached, then requests will fail because a page instance is not available ... this can happen as part of a denial of service attack. For this value to have any
meaning, it should be lower than the number of threads that the servlet container is configured to use when processing requests.

The default is 20 page instances.

tapestry.page-pool.soft-limit

The number of pages in the page pool (for a given page name / locale combination) before which Tapestry will start to wait for existing pages to be made
available. Under this limit of pages, Tapestry will simply create a new page instance if no existing instance is readily available. Once the soft limit is
reached, Tapestry will wait a short period of time (the soft wait interval) to see if an existing page instance is made available. It will then create a new page
instance (unless the hard limit has been reached).

The default is 5 page instances. Remember that page pooling is done separately for each page (and localization of the page).

tapestry.page-pool.soft-wait

The time interval that Tapestry will wait for a page instance to become available before deciding whether to create an entirely new page instance.

The default is "10 ms" (10 milliseconds; see).Time Interval Formats

tapestry.page-preload-mode

Controls in what environment page preloading should occur. By default, preloading only occurs in production. SymbolConstants.PRELOADER_MODE –
Possible values are "ALWAYS", "DEVELOPMENT", "NEVER", or "PRODUCTION" (the default is PRODUCTION when in production mode, or
DEVELOPMENT otherwise). See .PreloaderMode

tapestry.persistence-strategy

SymbolConstants.PERSISTENCE_STRATEGY – Identifies the default for all pages that do not provide an override. The default is persistence strategy
"session" (PersistenceConstants.SESSION).

tapestry.production-mode

SymbolConstants.PRODUCTION_MODE – A flag (true or false) indicating whether the application is running in production or in development. The default
is true, which means that runtime exceptions are not reported with full detail (only the root exception message is displayed, not the entire stack of
exceptions, properties and other information shown in development mode).

tapestry.restrictive-environment

Starting in 5.2, this is only used if tapestry.page-pool-enabled is "true". Removed in 5.3

Deprecated since 5.2

Starting in 5.2, this is only used if tapestry.page-pool-enabled is "true". Removed in 5.3

Deprecated since 5.2

Starting in 5.2, this is only used if tapestry.page-pool-enabled is "true". Removed in 5.3

Added in 5.4

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/util/TimeInterval.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/pageload/PreloaderMode.html
http://tapestry.apache.org/persistent-page-data.html#PersistentPageData-PersistenceStrategies

 – A flag (true or false) that, if true, changes some default Tapestry behavior to make it work better in SymbolConstants.RESTRICTIVE_ENVIRONMENT
restrictive environments such as (GAE). Specifically, if true, then OperationsTracker writes its exception report files into a single folder Google App Engine
(specified by the tapestry.exception-reports-dir symbol, above) rather than creating dated sub-folders under that path, and ResourceTransformerFactory
avoids creating a cache folder for resources.

tapestry.secure-enabled

SymbolConstants.SECURE_ENABLED – If true, then @ annotations are honored; if false, no security checks or redirects take place. This Secure
defaults to tapestry.production-mode, meaning that in development mode it will (by default) be disabled. However, sites that are intended to be served only
under HTTPS should set this to . See for details.false HTTPS

tapestry.secure-page

MetaDataConstants.SECURE_PAGE – If true, then the page may only be accessed via HTTPS. The @ annotation will set this value to true. This Secure
symbol is the default for all pages; set it to "true" to force the entire application to be secure. See for details.HTTPS

tapestry.service-reloading-enabled

If true (the default), then Tapestry IoC will attempt to reload service implementations when they change. This only applies to classes that Tapestry IoC
instantiates itself, and have a known service interface (the container creates a proxy that, internally, can reload the implementation). Service reloading only
works when the underlying class files are on the filesystem ... it is intended for development, not as an option in production.

This must be specified as a JVM system property. You may not set it in your module class.

tapestry.scriptaculous

SymbolConstants.SCRIPTACULOUS – The path to the embedded copy of packaged with Tapestry. This value may be overridden to use script.aculo.us
a different version of the library. See for the default version.script.aculo.us Legacy JavaScript

tapestry.session-locking-enabled

SymbolConstants.SESSION_LOCKING_ENABLED – If true (the default), then Tapestry will use a lock when reading/updating HttpSession attributes, to
avoid simultaneous access by multiple threads when using AJAX. See . Set to false to deactivate the session locking logic.TAP5-2049

Prior to version 5.4 session locking was not performed.

tapestry.start-page-name

Added in 5.4

Added in 5.2

Added in 5.2

Added in 5.4

https://cwiki.apache.org/confluence/display/TAPESTRY/Google+App+Engine
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Secure.html
https://cwiki.apache.org/confluence/display/TAPESTRY/HTTPS
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Secure.html
https://cwiki.apache.org/confluence/display/TAPESTRY/HTTPS
http://script.aculo.us/
http://script.aculo.us
https://cwiki.apache.org/confluence/display/TAPESTRY/Legacy+JavaScript
https://issues.apache.org/jira/browse/TAP5-2049

SymbolConstants.START_PAGE_NAME – The logical name of the start page, the page that is rendered for the . This is normally "start". This root URL
functionality is vestigial: it has been superseded by the use of Index pages.

tapestry.strict-css-url-rewriting

SymbolConstants.STRICT_CSS_URL_REWRITING – Controls whether to throw an exception (true) or log a warning (false) when Tapestry encounters a
URL reference to a non-existing file within a CSS file. The default is false.

tapestry.supported-locales

SymbolConstants.SUPPORTED_LOCALES – A comma-separated list of supported locales. Incoming requests as "narrowed" to one of these locales,
based on closest match. If no match can be found, the first locale in the list is treated as the default.

The default is (currently) "en,it,es,zh_CN,pt_PT,de,ru,hr,fi_FI,sv_SE,fr_FR,da,pt_BR,ja,el". As the community contributes new localizations of the
necessary messages files, this list will expand. Note that the Tapestry quickstart archetype overrides the factory default, forcing the application to be
localized only for "en".

tapestry.cors-enabled

SymbolConstants.CORS_ENABLED – Defines whether the CORS (Cross-Origing Resource Sharing) support should be enabled or not. Default value is f
. If you set this to ,alse true

you should also set at least too.Symbol.CORS_ALLOWED_ORIGINS

tapestry.cors-allowed-origins

SymbolConstants.CORS_ALLOWED_ORIGINS – Comma-delimited of origins allowed for CORS. The special value * means allowing all origins. This is
used by the default implementation of . Default value is the empty string (i.e. no CorsHandlerHelper.getAllowedOrigin(HttpServletRequest)
origins allowed and CORS actually disabled).

tapestry.cors-allow-credentials

SymbolConstants.CORS_ALLOW_CREDENTIALS – Boolean value defining whether the HTTP header Access-Control-Allow-Credentials
should be set automatically in the response for CORS requests. Default value is . This is used by the default implementation of false CorsHandlerHelpe

.r.configureCredentials(HttpServletResponse)

tapestry.cors-allow-methods

SymbolConstants.CORS_ALLOW_METHODS – Value to be used in the in CORS preflight request responses. Access-Control-Allow-Methods
This is used by the default implementation of . Default value is CorsHandlerHelper.configureMethods(HttpServletResponse) GET,HEAD,PUT,

.PATCH,POST,DELETE

Added in 5.8.2

Added in 5.8.2

Added in 5.8.2

Added in 5.8.2

tapestry.cors-allowed-headers

SymbolConstants.CORS_ALLOWED_HEADERS – Value to be used in the in CORS preflight request responses. Access-Control-Allow-Headers
This is used by the default implementation of , which only sets the CorsHandlerHelper.configureAllowedHeaders(HttpServletResponse)
header if the value isn't empty. Default value is the empty string.

tapestry.cors-expose-headers

SymbolConstants.CORS_EXPOSE_HEADERS – Value to be used in the in CORS preflight request responses. Access-Control-Expose-Headers
This is used by the default implementation of , which only sets the CorsHandlerHelper.configureExposeHeaders(HttpServletResponse)
header if the value isn't empty. Default value is the empty string.

tapestry.cors-max-age

SymbolConstants.CORS_MAX_AGE – Value to be used in the in CORS preflight request responses. This is used by the Access-Control-Max-Age
default implementation of , which only sets the header if the value isn't empty. CorsHandlerHelper.configureMaxAge(HttpServletResponse)
Default value is the empty string.

tapestry.suppress-redirect-from-action-requests

SymbolConstants.SUPPRESS_REDIRECT_FROM_ACTION_REQUESTS – Normally, Tapestry responds to action requests (such as form submissions)
by sending a client-side redirect to the rendering page. This has a lot of benefits in terms of improving browser navigation, making sure URLs are
bookmarkable, and so forth. However, it has a cost: more data stored persistently in the session, and a double-request for each user action (one action
request, one render request).

Setting this symbol to "true" changes the Tapestry behavior to make it more like Tapestry 4: a markup response is sent directly for the action request, with
no redirect in the middle. This option should be used with care, and only in cases where you are certain that the benefits outweigh the disadvantages.

tapestry.thread-pool.core-pool-size

IOCSymbols.THREAD_POOL_CORE_SIZE – Nominal size of the thread pool Tapestry uses to execute tasks in parallel. Under sufficient load, the thread
pool may grow larger than this core size. Defaults to 3.

tapestry.thread-pool.max-pool-size

Added in 5.8.2

Added in 5.8.2

Added in 5.8.2

Deprecated since 5.2

Removed in 5.3

IOCSymbols.THREAD_POOL_MAX_SIZE – Maximum size of the thread pool Tapestry uses to execute tasks in parallel. Defaults to 10.

tapestry.thread-pool.queue-size

IOCSymbols.THREAD_POOL_QUEUE_SIZE – Size of the task queue for the thread pool. Once the core pool size is reached, new threads are not
created until the queue is full. The default queue size is 100.

tapestry.thread-pool.keep-alive

IOCSymbols.THREAD_POOL_KEEP_ALIVE – The time to keep a created but unused thread in the pool alive. Defaults to one minute.

tapestry.thread-pool-enabled

IOCSymbols.THREAD_POOL_ENABLED – If set to false, then parallel task execution does not occur. This is useful in environments where creating new
threads is not allowed, such as .Google App Engine

Setting Component Parameter Defaults

See the complete list of such constants at .ComponentParameterConstants

Configuring Ignored Paths

You may sometimes need to use Tapestry in concert with other servlets. This can cause problems, since Tapestry (being a servlet filter) may see URLs
intended for another servlet and attempt to process them.

The Servlet API does not provide Tapestry with any clues about what other servlets are available in the web application. Instead, you must configure
Tapestry to ignore paths intended for other servlets.

The IgnoredPathsFilter service is the method for this kind of configuration. Its configuration is an unordered collection of regular expression patterns. A
request whose path matches any of these patterns is processed by Tapestry.not

For example, say you are using . You'll likely have the servlet path /dwr mapped to the Direct Web Remoting servlet.Direct Web Remoting

You contribution would look like:

 public static void contributeIgnoredPathsFilter(Configuration<String> configuration)
 {
 configuration.add("/dwr/.*");
 }

The regular expression matches any path that begins with "/dwr/".

The regular expressions provided in the configuration are always compiled with case insensitivity enabled.

Also note that actual files in your web application (images, stylesheets, etc.) are always ignored by Tapestry.

Configuring Content Type Mapping

Added in 5.3

Previously, the queue size was unbounded, which meant that max-pool-size was ignored.

Added in 5.3

Some components, notably Grid, Pallete and Zone, have default parameter values specified in terms of symbols. This means you can use

these symbols to modify the defaults for all instances of such components in your application. For example, you can set the default rows

per page for all Grid instances by adding this to the method in your application's module class contributeApplicationDefaults

(typically AppModule.java): configuration.add(ComponentParameterConstants.GRID_ROWS_PER_PAGE, "15");

https://cwiki.apache.org/confluence/display/TAPESTRY/Google+App+Engine
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ComponentParameterConstants.html
http://getahead.org/dwr/

The mapping from file type (by extension) to content type is typically done as part of your servlet-containers configuration. Alternately, you may contribute
to the service's configuration. This is a mapped configuration; it maps file extensions (such as "css" or "js") to content types ("text/css" ResourceStreamer
or "text/javascript") respectively.

Setting Execution Modes

Starting with Tapestry 5.2.4, we can specify an by loading specific Tapestry Modules through a JVM System property. All modules execution mode
declared in this way will be loaded after the AppModule of your application. This feature is very useful for defining a different environment for Production
and Development modes, for example.

This JVM System property, named tapestry.execution-mode, is a comma-separated list of mode names. You can declare this property in a number of
different ways:

1. Add the parameter to your JVM command line:

-Dtapestry.execution-mode=uat jetty:run

2. Add the parameter to the Jetty plugin:

pom.xml

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <version>6.1.16</version>
 <configuration>
 <requestLog implementation="org.mortbay.jetty.NCSARequestLog">
 <append>true</append>
 </requestLog>
 <systemProperties>
 <systemProperty>
 <name>tapestry.execution-mode</name>
 <value>uat</value>
 </systemProperty>
 </systemProperties>
 </configuration>
</plugin>

3. Add the parameter to the Surefire plugin for your test:

pom.xml

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.8.1</version>
 <configuration>
 <systemPropertyVariables>
 <tapestry.execution-mode>uat</tapestry.execution-mode>
 </systemPropertyVariables>
 </configuration>
</plugin>

For each mode declared in your JVM System Property, TapestryFilter checks for a parameter in your web.xml, named tapestry.TheModeName-modules,
with TheModeName being the name of the desired mode. Its value will be a comma-separated list of modules.

If the tapestry.execution-mode is not declared, Tapestry will automatically look for the tapestry.production-modules parameter, because “production” is the
default tapestry.execution-mode value.

The example below defines two different execution modes in your web.xml file: production (the default value) and uat (for "user acceptance testing"). For
each mode, we list the modules we want to load. If we use JVM System property declared in the example above, the UatModeModule module will be
loaded.

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/internal/services/ResourceStreamer.html

web.xml

<context-param>
 <param-name>tapestry.production-modules</param-name>
 <param-value>com.example.myapp.services.ProductionModeModule</param-value>
</context-param>
<context-param>
 <param-name>tapestry.uat-modules</param-name>
 <param-value>com.example.myapp.services.UatModeModule</param-value>
</context-param>

<context-param>
 <param-name>tapestry.integration-modules</param-name>
 <param-value>com.example.myapp.services.IntegrationModeModule</param-value>
</context-param>

Execution mode itself may be a comma separated list:

-Dtapestry.execution-mode=uat,integration jetty:run

Segregating Applications Into Folders

In many cases where Tapestry is being adopted into an existing web application (possibly written in Tapestry 4 or some other framework), it is nice to
segregate the Tapestry application into its own folder, to avoid conflicts with the existing application or servlets.

Setting this up is in two parts:

Modifying the configuration of the for the Tapestry filter to match the specified folder.<url-pattern>
Identifying the folder name using a Tapestry symbol value contribution.

So, if you wanted to run the Tapestry application inside folder , you would modify your indicate the use of the folder:t5app web.xml

 <filter-mapping>
 <filter-name>app</filter-name>
 <url-pattern>/t5app/*</url-pattern>
 </filter-mapping>

... and in your AppModule, you would inform Tapestry about the mapping change:

public class AppModule
{
 @Contribute(SymbolProvider.class)
 @ApplicationDefaults
 public static void applicationDefaults(MappedConfiguration<String, String> configuration)
 {
 configuration.add(SymbolConstants.APPLICATION_FOLDER, "t5app")
 }
}

This changes the servlet container to forward requests inside the folder to Tapestry; requests for other folders (or the root folder) will not be only t5app
passed to Tapestry at all. The symbol contribution informs Tapestry to change the URLs it generates to include the necessary folder name; it also affects
the logic in Tapestry that recognizes and handles requests.

Added in 5.3

Support for application folders was added in release 5.3.

This extra mapping is unfortunately necessary, because the Servlet API does not provide a way for a servlet filter, such as the one used by
Tapestry, to know about its mapping.

In addition, if you choose to place page template files in the context, rather than on the classpath (as with component templates), then you will place those
template files inside the folder.t5app

At this time, it is still not possible to run multiple Tapestry 5 applications within the same web application.

Project Layout User Guide Runtime Exceptions

https://cwiki.apache.org/confluence/display/TAPESTRY/Project+Layout
https://cwiki.apache.org/confluence/display/TAPESTRY/Project+Layout
https://cwiki.apache.org/confluence/display/TAPESTRY/User+Guide
https://cwiki.apache.org/confluence/display/TAPESTRY/User+Guide
https://cwiki.apache.org/confluence/display/TAPESTRY/Runtime+Exceptions
https://cwiki.apache.org/confluence/display/TAPESTRY/Runtime+Exceptions

	Configuration

