API Initialization

Log4j 2.x has a fairly complex API initialization process. Log4j 3.x intends to simplify and unify this into a proper SPI.

Overview of 2.23.0 API Initialization

In Log4j 2.23.0 and later the Log4j API subsystems are initialized roughly in this order:

1. StatusLogger and Abstract Logger are initialized with some dependent classes like Mar ker Manager . These classes of course can not call
St at usLogger . get Logger () in their static initialization block nor use Properti esUtil ,

2. The classloading subsystem is started: Loader Uti | , Servi ceLoader Util , Gsgi Servi ceLocat or and St ackLocat or Uti| . These can
use St at usLogger , but can not use Properti esUti| in their static initialization block,

3. PropertiesUtil isinitialized,

4. The other services are initialized and the system should pretty much be stable.

Overview of older 2.x API Initialization

Typical usage of Log4j begins with use of either LogManager or Thr eadCont ext . The expectation is that Log4j will be initialized and ready to use as
soon as user code calls LogManager : : get Logger or similar. This introduces a hierarchy of dependent classes for initialization.

LogManager

Initializing LogManager begins with its static fields. Besides using St ri ngs. EMPTY which itself ends up initializing Syst enPr oper ti esPropert ySourc
e, alLogger field is initialized with the result of St at usLogger : : get Logger . Entering St at usLogger initializes Abst r act Logger which initializes Ma
rker Manager . Both St at usLogger and Abst ract Logger use PropertiesUti| which initialize instances for the | og4j 2. St at usLogger .
properties and| og4j 2. conponent . properti es files, the latter which corresponds to the general Properti esUti|:: get Properti es instance.
Loading any Properti esUti | instance ultimately uses Ser vi ceLoader Ut i | to load PropertySour ce services to back the instance. Abst r act Logg
er also uses Loader Ut i | which itself avoids initializing Properti esUt i | until first usage in methods (and is required to use LowLevel LogUti | for
logging similar to Properti esUti | and its PropertySour ce implementations along with any other classes initialized at this point). The rest of the
classes initialized due to St at usLogger are either interfaces or simple stateless classes and are not necessary to analyze.

Next, the static initialization block of LogManager is run to set its initial Logger Cont ext Fact or y static field. It uses PropertiesUtil ::

get Properti es and Loader Ut i | to load a class specified by the | og4j 2. | ogger Cont ext Fact ory property if provided. Otherwise, it checks Pr ovi d
erUtil:: hasProviders which leads into the next startup dependency chain. Provi der Ut i | contains a lock in a static field used for guarding the lazy
initialization of installed providers. This allows the Act i vat or support class to be used in OSGi environments to lock the startup until a Log4j provider is
installed from another bundle (otherwise, eager initialization causes OSGi to only find the fallback Si npl eLogger Cont ext Fact ory implementation as | o
g4j - cor e is not installed and started until after | 0g4j - api is installed). If no providers have been installed already, lazy initialization takes place which
acquires the startup lock, loads all available Pr ovi der services via Ser vi ceLoader Uti |, then loads any available META- | NF/ | og4j - provi der.
properti es specified Log4j providers (the original service provider definition format used by Log4j 2.x), then finally releases the startup lock.

LogManager then tries loading the Logger Cont ext Fact or y classes specified by the discovered Log4j providers. If only one provider was found, its Log
ger Cont ext Fact ory is used. If more than one provider is found, then the one with the highest priority value is used (along with a warning message with
the list of discovered providers and priorities). Otherwise, Si npl eLogger Cont ext Fact ory is used as a fallback. Once an initial factory is selected, LogM
anager St atus setsitsinitializedflagtotrue.

Typical invocations of LogManager include LogManager : : get Logger of some form. The zero-argument version of get Logger uses St ackLocat or Ut
i | to find the caller class whose initialization uses St ackLocat or which has its own static initialization invoking Loader Ut i | : : | oadd ass which has
already been initialized from earlier. Any of the get Logger methods call out to one of the get Cont ext methods to get the appropriate Logger Cont ext t
o use for getting Logger instances. These typically get the caller class and look up a Logger Cont ext using its Cl assLoader which delegates to Logge
r Cont ext Fact ory: : get Cont ext. The details of this are specific to each Log4j provider. The default | 0g4j - cor e configuration uses a Cl assLoader
Cont ext Sel ect or class to keep track of one or more Log4j configurations isolated by C assLoader such as in a Servlet environment.

ThreadContext

Initializing Thr eadCont ext begins with the Thr eadCont ext : : i ni t method invoked by its static initializer block. This initializes Thr eadCont ext MapFa
ct ory which initializes Properti esUti| (which follows the same dependency chain from LogManager with Ser vi ceLoader Uti | and Pr opertySour
ce service instances) to set initial static field values (which will be re-initialized each time Thr eadCont ext MapFact ory: : i ni t is invoked). Thenitcalls T
hr eadCont ext MapFact ory: : i ni t which invokes the same static i ni t method on CopyOnW i t eSort edAr r ay Thr eadCont ext Map, Gar bageFr ee
Sor t edAr r ayThr eadCont ext Map, and Def aul t Thr eadCont ext Map respectively before overwriting its initial static fields with whatever Pr operti es
Uti | has now (typically the same value as not much time has passed). Each of those i ni t methods sets static fields on their respective classes to values
obtained from PropertiesUtil.

ThreadCont ext : : i ni t continues with a lookup to Properti esUti | to find out if the thread context map, stack, or both have been disabled. Combined

with the settings initialized by Thr eadCont ext MapFact ory, new instances of both Thr eadCont ext Map and Thr eadCont ext St ack are assigned to
static fields in Thr eadCont ext which are used by the remaining static methods in Thr eadCont ext .

Problem

There is a lot of static state in various classes in | 0g4j - api which should not be doing so. Static initialization blocks in classes introduce hard to
understand dependencies between classes during class loading which has already necessitated in the introduction of the LowlL.evel LogUti | class for
classes initially loaded by St at usLogger to themselves have an ability to log errors. Eager static initialization of the logging system makes it extremely
difficult to customize the behavior of Log4j startup and has led to various workarounds. This also makes it non-trivial to support concurrent execution of
unit tests which leads to a long, serialized build configuration.

In Log4j 3.x, we should clean up this APl initialization story to avoid static initialization (unless used for performance reasons such as cached lookup tables
of pre-computed values), centralize the entry points between LogManager and Thr eadCont ext along with supporting classes like Provi der Uti | and A
ctivat or in OSGi into a slightly more sophisticated Pr ovi der SPI, and update our test infrastructure to reuse the same SPI.

	API Initialization

