
1.

2.

3.
4.

API Initialization
Log4j 2.x has a fairly complex API initialization process. Log4j 3.x intends to simplify and unify this into a proper SPI.

Overview of 2.23.0 API Initialization

In Log4j 2.23.0 and later the Log4j API subsystems are initialized roughly in this order:

StatusLogger and are initialized with some dependent classes like . These classes of course can not call AbstractLogger MarkerManager
 in their static initialization block nor use ,StatusLogger.getLogger() PropertiesUtil

The classloading subsystem is started: , , and . These can LoaderUtil ServiceLoaderUtil OsgiServiceLocator StackLocatorUtil
use , but can not use in their static initialization block,StatusLogger PropertiesUtil
PropertiesUtil is initialized,
The other services are initialized and the system should pretty much be stable.

Overview of older 2.x API Initialization

Typical usage of Log4j begins with use of either or The expectation is that Log4j will be initialized and ready to use as LogManager ThreadContext.
soon as user code calls or similar. This introduces a hierarchy of dependent classes for initialization.LogManager::getLogger

LogManager

Initializing begins with its static fields. Besides using which itself ends up initializing LogManager Strings.EMPTY SystemPropertiesPropertySourc
 a field is initialized with the result of Entering initializes which initializes e, Logger StatusLogger::getLogger. StatusLogger AbstractLogger Ma

 Both and use which initialize instances for the rkerManager. StatusLogger AbstractLogger PropertiesUtil log4j2.StatusLogger.
 and files, the latter which corresponds to the general instance. properties log4j2.component.properties PropertiesUtil::getProperties

Loading any instance ultimately uses to load services to back the instance. PropertiesUtil ServiceLoaderUtil PropertySource AbstractLogg
 also uses which itself avoids initializing until first usage in methods (and is required to use for er LoaderUtil PropertiesUtil LowLevelLogUtil

logging similar to and its implementations along with any other classes initialized at this point). The rest of the PropertiesUtil PropertySource
classes initialized due to are either interfaces or simple stateless classes and are not necessary to analyze.StatusLogger

Next, the static initialization block of is run to set its initial static field. It uses LogManager LoggerContextFactory PropertiesUtil::
 and to load a class specified by the property if provided. Otherwise, it checks getProperties LoaderUtil log4j2.loggerContextFactory Provid

 which leads into the next startup dependency chain. contains a lock in a static field used for guarding the lazy erUtil::hasProviders ProviderUtil
initialization of installed providers. This allows the support class to be used in OSGi environments to lock the startup until a Log4j provider is Activator
installed from another bundle (otherwise, eager initialization causes OSGi to only find the fallback implementation as SimpleLoggerContextFactory lo

 is not installed and started until after is installed). If no providers have been installed already, lazy initialization takes place which g4j-core log4j-api
acquires the startup lock, loads all available services via then loads any available Provider ServiceLoaderUtil, META-INF/log4j-provider.

 specified Log4j providers (the original service provider definition format used by Log4j 2.x), then finally releases the startup lock.properties

LogManager then tries loading the classes specified by the discovered Log4j providers. If only one provider was found, its LoggerContextFactory Log
 is used. If more than one provider is found, then the one with the highest priority value is used (along with a warning message with gerContextFactory

the list of discovered providers and priorities). Otherwise, is used as a fallback. Once an initial factory is selected, SimpleLoggerContextFactory LogM
 sets its flag to anagerStatus initialized true.

Typical invocations of include of some form. The zero-argument version of uses LogManager LogManager::getLogger getLogger StackLocatorUt
 to find the caller class whose initialization uses which has its own static initialization invoking which has il StackLocator LoaderUtil::loadClass

already been initialized from earlier. Any of the methods call out to one of the methods to get the appropriate tgetLogger getContext LoggerContext
o use for getting instances. These typically get the caller class and look up a using its which delegates to Logger LoggerContext ClassLoader Logge

 The details of this are specific to each Log4j provider. The default configuration uses a rContextFactory::getContext. log4j-core ClassLoader
 class to keep track of one or more Log4j configurations isolated by such as in a Servlet environment.ContextSelector ClassLoader

ThreadContext

Initializing begins with the method invoked by its static initializer block. This initializes ThreadContext ThreadContext::init ThreadContextMapFa
 which initializes (which follows the same dependency chain from with and ctory PropertiesUtil LogManager ServiceLoaderUtil PropertySour

 service instances) to set initial static field values (which will be re-initialized each time is invoked). Then it calls ce ThreadContextMapFactory::init T
 which invokes the same static method on hreadContextMapFactory::init init CopyOnWriteSortedArrayThreadContextMap, GarbageFree
 and respectively before overwriting its initial static fields with whatever SortedArrayThreadContextMap, DefaultThreadContextMap Properties

 has now (typically the same value as not much time has passed). Each of those methods sets static fields on their respective classes to values Util init
obtained from PropertiesUtil.

ThreadContext::init continues with a lookup to to find out if the thread context map, stack, or both have been disabled. Combined PropertiesUtil
with the settings initialized by new instances of both and are assigned to ThreadContextMapFactory, ThreadContextMap ThreadContextStack
static fields in which are used by the remaining static methods in ThreadContext ThreadContext.

Problem

There is a lot of static state in various classes in which should not be doing so. Static initialization blocks in classes introduce hard to log4j-api
understand dependencies between classes during class loading which has already necessitated in the introduction of the class for LowLevelLogUtil
classes initially loaded by to themselves have an ability to log errors. Eager static initialization of the logging system makes it extremely StatusLogger
difficult to customize the behavior of Log4j startup and has led to various workarounds. This also makes it non-trivial to support concurrent execution of
unit tests which leads to a long, serialized build configuration.

In Log4j 3.x, we should clean up this API initialization story to avoid static initialization (unless used for performance reasons such as cached lookup tables
of pre-computed values), centralize the entry points between and along with supporting classes like and LogManager ThreadContext ProviderUtil A

 in OSGi into a slightly more sophisticated SPI, and update our test infrastructure to reuse the same SPI.ctivator Provider

	API Initialization

