
AvalonStandards
Avalon Standards
The Avalon community recently voted to have a single platform. The core Avalon framework has traditionally offered quite a bit of leniency to container
developers by specifying certain standards. That has lead to various individual container standards which makes component reuse difficult if not not
impossible. This document serves to assist the Avalon community in

Identifying the existing standards and usages in current containers (ECM, Fortress, Phoenix, Merlin)
Build consensus on a set of standards which will be held by all Avalon containers (ie- a TCK)

This is not an attempt to build from scratch new standards. It is an attempt to identify existing approaches and develop a responsible way to both support
our existing users (via backwards compatibility or migration tools) and to offer a consistent platform for the future of Avalon.

A reminder of how to approach this process: http://marc.theaimsgroup.com/?l=avalon-dev&m=105965430911547&w=2

This is a good goal - try things out in separate containers and then
merge back the code into the core.

The problem is that such merges often take on the form:

 "This code works well in X. So we'll just put it in the core
 as it is, and no changes are allowed."

Instead of looking at the concepts of that code, and, allowing it to
change, get merged into the core:

 "These ideas works well in X, let's see if and when and in what form
 we can get them into the core."

I think this was what caused the last eruption.

If anything, this is what we need to work on. Learning not to lock
ourselves into our own idea just because we like it the most.

/LS

Standardization Areas

Standards Decomposition – We need to be able to break a standard down into a smaller set. Then the component can declare which standards it
requires and which ones are optional. The container need to know how to detect that a component require a standard that the container doesn't
support.
Compliance, Identification and Naming – How to recognize a component, know which standards it support, the name and version.
Packaging – How can components be that can be shipped as-is between users and tools.black boxes
Meta-Info

Component contract – how component developers specify meta-info
Container contract – how container developers or extension writers retrieve meta-info

Context Entries (see)AvalonContextSurvey
API (updates to framework itself)
Configuring Components
Assembling Components (how to map components together and decide which ones to load)
Distribution Format

[add more here]

Meta-Info
Historical Context: http://marc.theaimsgroup.com/?l=avalon-dev&w=2&r=3&s=vote+avalon+meta&q=b

Merlin: Avalon-Meta

http://avalon.apache.org/meta/
Defines a set of javadoc tags: http://avalon.apache.org/meta/tools/tags/index.html
Defines a "meta-model" based around the idea of a : Type http://avalon.apache.org/meta/meta/index.html

http://marc.theaimsgroup.com/?l=avalon-dev&m=105965430911547&w=2
https://cwiki.apache.org/confluence/display/AVALON/AvalonContextSurvey
http://marc.theaimsgroup.com/?l=avalon-dev&w=2&r=3&s=vote+avalon+meta&q=b
http://avalon.apache.org/meta/
http://avalon.apache.org/meta/tools/tags/index.html
http://avalon.apache.org/meta/meta/index.html

 <type>
 <info>
 <name>my-component</name>
 <version>1.2.1</version>
 <attributes>
 <attribute key="color" value="blue"/>
 <attribute key="quantity" value="35"/>
 </attributes>
 </info>

 <loggers>
 <logger name="store"/>
 <logger name="store.cache"/>
 <logger name="verifier"/>
 </loggers>

 <context type="MyContextInterface">
 <entry key="base" type="java.io.File"/>
 <entry key="mode" optional="TRUE"/>
 </context>

 <services>
 <service>
 <reference type="SimpleService" version="3.2">
 <attributes/>
 </service>
 </services>

 <dependencies>
 <dependency optional="FALSE"
 key="my-transformer"
 type="org.apache.cocoon.api.Transformer
 version="1.1">
 <attributes/>
 </dependency>
 </dependencies>
 </type>

Fortress Meta

uses a '.meta' properties file
uses a list of service files in the META-INF directory
http://avalon.apache.org/excalibur/fortress/using-meta-info.html

Example of .meta

#Meta information for org.apache.avalon.fortress.examples.components.TranslatorImpl
#Mon Mar 08 10:59:53 EST 2004
x-avalon.lifestyle=singleton
x-avalon.name=translator

Example of META-INF/services/org.apache.avalon.fortress.examples.components.Translator

org.apache.avalon.fortress.examples.components.TranslatorImpl

ECM/Fortress Roles Files

Also supported by Fortress

Example from avalon-standbox/examples:

http://avalon.apache.org/excalibur/fortress/using-meta-info.html

<?xml version="1.0"?>

<fortress-roles logger="system.roles">

 <role name="org.apache.avalon.examples.simple.Simple">
 <component shorthand="simple"
 class="org.apache.avalon.examples.simple.impl.SimpleConfigurationImpl"
 handler="org.apache.avalon.fortress.impl.handler.ThreadSafeComponentHandler"/>
 </role>

</fortress-roles>

Phoenix .xinfo

Phoenix .xinfo files: http://avalon.apache.org/phoenix/bdg/doclet-tags.html
Example:

<?xml version="1.0"?>

<blockinfo>

 <block>
 <version>1.2.3</version>
 </block>

 <services>
 <service name="com.biz.cornerstone.services.MyService"
 version="2.1.3" />
 </services>

 <dependencies>
 <dependency>
 <role>com.biz.cornerstone.services.Authorizer</role>
 <service name="com.biz.cornerstone.service.Authorizer"
 version="1.2"/>
 </dependency>
 <dependency>
 <!-- note that role is not specified and defaults
 to name of service. The service version is not
 specified and it defaults to "1.0" -->
 <service name="com.biz.cornerstone.service.RoleMapper"/>
 </dependency>
 </dependencies>

</blockinfo>

Commons Attributes

Commons-Attributes compiled-in attributes - yep, this one started as an attempt to solve the metainfo issue by defining a generic API to access
attributes: http://marc.theaimsgroup.com/?l=avalon-dev&m=105974933614920&w=2

Context Entries
See AvalonContextSurvey

Fortress

 These are passed to the components. Please note that "context-root" was at one time
 "app.home" until it got changed--I cannot remember the circumstances of that change.

 * impl.workDir File (directory) temporary directory
 * context-root File (directory) Context directory
 * component.logger String Component logger name
 * component.id String ID used to locate the component

http://avalon.apache.org/phoenix/bdg/doclet-tags.html
http://jakarta.apache.org/commons/sandbox/attributes/
http://marc.theaimsgroup.com/?l=avalon-dev&m=105974933614920&w=2
https://cwiki.apache.org/confluence/display/AVALON/AvalonContextSurvey

Avalon Meta

urn:avalon:partition String partition name
urn:avalon:name String component/scenerio name
urn:avalon:home File (directory) persistent directory
urn:avalon:temp File (directory) temporary directory
urn:avalon:classloader ClassLoader component classloader

Phoenix

app.name String application name
block.name String component name
app.home File (directory) persistent directory

 Datatype Phoenix Fortress Avalon Meta

component name String block.
name

component.id urn:avalon:name

app/block name String app.name component.
logger

urn:avalon:partition

app home dir File app.home context-root urn:avalon:home

app temp dir File impl.workDir urn:avalon:temp

component
classloader

Classloade
r

urn:avalon:
classloader

Comment from ???: Why not, if the container knows the component's intended enviroment, map? So if a component that was written for Phoenix asks for
app.home, give it urn:avalon:home.

Comment from Steve: mapping from standard context entries to environment entries is handled via the Avalon Meta alias attribute as per framework
documentation. This allows a Phoenix component to lookup "app.home" and get back the value corresponding to the standard "urn:avalon:home" entry.

Comment from leosutic: Sure. That solves backwards compatibility. But it'd be nice to have one canonical name for the thing, just for the sake of reducing
the number of names for the same thing.

Comment from niclas: If so, feel free to implement such uniformity in the legacy containers. Or is it something I don't understand?

API
There are some updates to the framework itself which may need to be made:

Selectors
Marker interfaces - some of them are part of framework, some not.

Poolable interface - not part of framework but used in ECM.

More to come
_ just setting up the basic structure here_

	AvalonStandards

