
CoreAdmin
Quick Review: What are Multiple Cores?
Multiple cores let you have a single Solr instance with separate configurations and indexes, with their own config and schema for very different
applications, but still have the convenience of unified administration. Individual indexes are still fairly isolated, but you can manage them as a single
application, create new indexes on the fly by spinning up new SolrCores, and even make one SolrCore replace another SolrCore without ever restarting
your Servlet Container. See MultipleIndexes

Core Administration
 Solr1.3

Since , SolrCore can optionally be managed at runtime. Additionally, Solr allows multiple SolrCore instances to run within a single web-app. The Solr1.3
cores can be dynamically managed via the CoreAdminHandler. For alternative ways to manage multiple indices, see .MultipleIndexes

Quick Review: What are Multiple Cores?
Core Administration
Configuration
CoreAdminHandler

STATUS
CREATE
RELOAD

Important Note About Some Configuration Changes
RENAME
SWAP
UNLOAD
LOAD
MERGEINDEXES
SPLIT

Known Issues

Configuration
As of there will be an optional new structure for solr.xml that will be mandatory for 5.0. See and Solr4.4 Solr.xml 4.4 and beyond Core Discovery (4.4

.and beyond)

As of this new structure will be mandatory and cores will be discovered by walking SOLR_HOME or coreRootDirectory - see links above.Solr5.0

CoreAdminHandler
The CoreAdminHandler is a special that is used to manage existing cores. Unlike normal SolrRequestHandlers, the SolrRequestHandler
CoreAdminHandler is not attached to a core, it is configured in solr.xml. A single CoreAdminHandler exists for each web-app

To enable dynamic core configuration, make sure the attribute is set in solr.xml. If this attribute is absent, the CoreAdminHandler will not be adminPath
available.

STATUS

Get the status for a given core or all cores if no core is specified:

http://localhost:8983/solr/admin/cores?action=STATUS&core=core0

http://localhost:8983/solr/admin/cores?action=STATUS

CREATE

Creates a new core based on preexisting instanceDir/solrconfig.xml/schema.xml, and registers it. If persistence is enabled (persist=true), the configuration
for this new core will be saved in 'solr.xml'.

http://localhost:8983/solr/admin/cores?action=CREATE&name=coreX&instanceDir=path_to_instance_directory&config=config_file_name.
xml&schema=schema_file_name.xml&dataDir=data

instanceDir is a required parameter. config, schema & dataDir parameters are optional. (Default is to look for solrconfig.xml/schema.xml inside instanceDir.
Default place to look for dataDir depends on solrconfig.xml.)

 Core properties can be specified when creating a new core using optional request parameters, similar to Solr3.4 property.name=value <property>
tag inside solr.xml.

https://cwiki.apache.org/confluence/display/SOLR/MultipleIndexes
https://cwiki.apache.org/confluence/display/SOLR/Solr1.3
https://cwiki.apache.org/confluence/display/SOLR/Solr1.3
https://cwiki.apache.org/confluence/display/SOLR/MultipleIndexes
https://cwiki.apache.org/confluence/display/SOLR/Solr4.4
https://cwiki.apache.org/confluence/display/SOLR/Solr.xml+4.4+and+beyond
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=120722784
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=120722784
https://cwiki.apache.org/confluence/display/SOLR/Solr5.0
#
https://cwiki.apache.org/confluence/display/SOLR/SolrRequestHandler
http://localhost:8983/solr/admin/cores?action=STATUS&core=core0
http://localhost:8983/solr/admin/cores?action=STATUS
http://localhost:8983/solr/admin/cores?action=CREATE&name=coreX&instanceDir=path_to_instance_directory&config=config_file_name.xml&schema=schema_file_name.xml&dataDir=data
http://localhost:8983/solr/admin/cores?action=CREATE&name=coreX&instanceDir=path_to_instance_directory&config=config_file_name.xml&schema=schema_file_name.xml&dataDir=data
https://cwiki.apache.org/confluence/display/SOLR/Solr3.4

 Optional parameters:Solr4.3

loadOnStartup=[|false] - whether to load the core when Solr starts or wait until the first time it's referenced.true

transient=[true|] - whether the core can be automatically unloaded if the number of transient cores exceeds the transientCacheSize false
parameter that may be specified in the <cores> tag. See [Solr.xml]

The behaviour of the CREATE action when passed the name of a pre-existing core depends on the Solr version:

Prior to Solr 4, a new core is created in the background. While it is initializing, the old core will continue to accept requests. Once it has finished,
all new request will go to the "new" core, and the "old" core will be unloaded.
In Solr 4.0 to 4.2, the above behaviour still holds, but is buggy, and clients should use the RELOAD action instead.
In Solr 4.3 and above, an error is returned, and RELOAD must be used.

RELOAD

Load a new core from the same configuration as an existing registered core. While the "new" core is initalizing, the "old" one will continue to accept
requests. Once it has finished, all new request will go to the "new" core, and the "old" core will be unloaded.

http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0

This can be useful when (backwards compatible) changes have been made to your solrconfig.xml or schema.xml files (e.g. new declarations, <field>
changed default params for a , etc...) and you want to start using them without stopping and restarting your whole Servlet Container.<requestHandler>

Important Note About Some Configuration Changes

Starting with , the RELOAD command is implemented in a way that results a "live" reloads of the , reusing the existing various objects such Solr4.0 SolrCore
as the . As a result, some configuration options can not be changed and made active with a simple RELOAD...SolrIndexWriter

IndexWriter related settings in <indexConfig>
<dataDir> location

See for more background.SOLR-3592

RENAME

Change the names used to access a core. The example below changes the name of the core from "core0" to "core5".

http://localhost:8983/solr/admin/cores?action=RENAME&core=core0&other=core5

SWAP

Atomically swaps the names used to access two existing cores. This can be useful for replacing a "live" core with an "ondeck" core, and keeping the old
"live" core running in case you decide to roll-back.

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0

UNLOAD

Removes a core from Solr. Existing requests will continue to be processed, but no new requests can be sent to this core by the name. If a core is
registered under more than one name, only that specific mapping is removed.

http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0

 An optional boolean parameter "deleteIndex" can be used to delete the index on core unload.Solr3.3

http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0&deleteIndex=true

 Two more optional parameters are "deleteDataDir" and "deleteInstanceDir" on core unload.Solr4.0

deleteDataDir removes "data" and all sub-directories
deleteInstanceDir removes related to the core, the index directory, the configuration files, etc. This command would remove the everything
directory core0 and all sub-directories. NOTE: there is a bug in 4.0 currently (4.0.0) that prevents this from working unless you SOLR-3984
specify the absolute path in your <core.../>.

http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0&deleteIndex=true

https://cwiki.apache.org/confluence/display/SOLR/Solr4.3
http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
#
#
https://issues.apache.org/jira/browse/SOLR-3592
http://localhost:8983/solr/admin/cores?action=RENAME&core=core0&other=core5
http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0
http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0
https://cwiki.apache.org/confluence/display/SOLR/Solr3.3
http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0&deleteIndex=true
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://issues.apache.org/jira/browse/SOLR-3984

These three "delete*" commands form a hierarchy. "deleteInstanceDir" will do what both "deleteDataDir" and "deleteIndex" do and much more, so use
cautiously. "deleteDataDir" will also "deleteIndexDir". You should only need to specify one.

LOAD

 not implemented yet! Use CREATE

So far, no use cases have been presented for a LOAD command that aren't satisfied by using CREATE so it's doubtful that a separate LOAD command
will be implemented unless such a use-case is found.

This will load a new core from an existing configuration (will be implemented when cores can be described with a lazy-load flag).

?persist=true will save the changes to solr.xml

http://localhost:8983/solr/admin/cores?action=LOAD&core=core0

MERGEINDEXES

 Solr1.4

Merge indexes into a another index. This is described more fully at .MergingSolrIndexes

SPLIT

 Solr4.3

Splits an index into two or more indexes. It accepts the following parameters:

"core" - The core whose index is to be split
"path" - The file path to which the pieces of the "core"'s index will be written (multi-valued parameter)
"targetCore" - The target solr core (which must already exist) to which the pieces of the split index will be merged (multi-valued parameter)

Either "path" or "targetCore" must be specified (but not both). At least two values for "path" or "targetCore" must be specified.

Example:

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1&targetCore=core2
http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&path=/path/to/index/1&path=/path/to/index/2

This command is used as part of the SPLITSHARD Collection API but it can be used for non-cloud Solr cores as well. When used against a non-SolrCloud
cloud core, this action will split the source index into parts containing an equal number of documents.

Known Issues
Lucene's maxClauseCount is a static variable, making it a single value across the entire JVM. Whichever Solr core initializes last will win BooleanQuery
the setting of the solrconfig.xml's maxBooleanClauses value. Workaround, set maxBooleanClauses to the greatest value desired in *all* cores.

http://localhost:8983/solr/admin/cores?action=LOAD&core=core0
https://cwiki.apache.org/confluence/display/SOLR/Solr1.4
https://cwiki.apache.org/confluence/display/SOLR/MergingSolrIndexes
https://cwiki.apache.org/confluence/display/SOLR/Solr4.3
http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1&targetCore=core2
http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&path=/path/to/index/1&path=/path/to/index/2
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
#

	CoreAdmin

