
HowToContribute

Getting the source code
Making Changes
Generating a patch

Compilation
Unit Tests
Javadoc
Creating a patch
Creating a patch with git
Applying a patch
Contributing your work

Jira Guidelines
Stay involved
Picking Something to Work On

Getting the source code

First of all, you need the Pig source code.

Get the source code on your local drive using . Most development is done on the "trunk":SVN

svn checkout http://svn.apache.org/repos/asf/pig/trunk/

or

git clone https://github.com/apache/pig.git

Making Changes

Before you start, send a message to the , or file a bug report in . Describe your proposed changes and check that they fit in Pig developer mailing list Jira
with what others are doing and have planned for the project. Be patient, it may take folks a while to understand your requirements.

Modify the source code and add some (very) nice features or fix some (nasty) bugs using your favorite IDE.

But take care about the following points

All public classes and methods should have informative comments.Javadoc
Do not use @author tags.

Code should be formatted according to . We use four spaces (tabs) for indentation.Sun's conventions not
Contributions should pass unit tests.
New unit tests should be provided to demonstrate bugs and fixes. is our test framework:JUnit

You must implement a class whose class name contains .Test
If an cluster and/or a cluster is needed by your test, add a field of type to the class and HDFS MapReduce MiniGenericCluster
initialize it with a statement like the following (the name of the field is not important). is an example of a TestAlgebraicEval.java
test that uses cluster. The test will then run on a cluster created on the local machine.
MiniGenericCluster cluster = .buildCluster();MiniGenericCluster

Define methods within your class and annotate it with , and call JUnit's many assert methods to verify conditions; these methods will be @Test
executed when you run .ant test
Place your class in the tree.test
You can then run the core unit test with the command . Similarly, you can run a specific unit test with the command ant test-commit ant

 (For example)test -Dtestcase=<ClassName> ant test -Dtestcase=TestPigFile

Generating a patch

Compilation

Make sure that your code introduces no new warnings into the javac compilation.

To compile with Hadoop 2.x:

> ant clean jar

The latest Pig codebase only supports Hadoop 2.x which is based on YARN and has separate Resource Manager and Application Masters instead of a
single JobTracker that managed both resources (cpu, memory) and running of mapreduce applications. The exact versions of Hadoop 2.x pig compiles
against is configured in and is usually updated to compile against the latest stable releases.ivy/libraries.properties

http://pig.apache.org/version_control.html
http://svn.apache.org/repos/asf/pig/trunk/
https://github.com/apache/pig.git
http://pig.apache.org/mailing_lists.html
http://issues.apache.org/jira/browse/PIG
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://java.sun.com/docs/codeconv/
http://www.junit.org/

Please note that in earlier versions Pig used to support older Hadoop versions too, and there was an option to select a certain Hadoop version at build
time. If you would like to contribute to older release branches (0.16.0 or below) you will have to set the hadoopversion property. It has 2 values - 20 and
23. which is the default denotes the Hadoop 0.20.x and 1.x releases which are the old versions with JobTracker. The other option, -Dhadoopversion=20

denotes the Hadoop 0.23.x and Hadoop 2.x releases.-Dhadoopversion=23

Unit Tests

The full suite of pig unit tests has a huge number of tests and there are multiple execution modes - mapreduce (default), spark, tez against which the
whole test suite can be run. Since it takes a really long time, you are not expected to run the full suite of tests before submitting the patch. You can just run
and verify the test classes affected by your patch and also run test-commit which runs a core set of tests that takes 20 mins. If the fix is specific to a
particular execution mode (For eg: tez or spark), run the tests with that exectype. The Pig commit build () https://builds.apache.org/job/Pig-trunk-commit
which runs daily will report any additional failures on the committed patch and a new patch can be submitted that fixes those failures later. Some of the
different test goals are - full suite of unit tests in mapreduce mode, - full suite of unit tests in tez mode, - core set of tests test test-tez test-commit
in mapreduce mode.

To run the full suite of testcases in mapreduce mode with Hadoop 2.x. Usually you don't have to run this unless you are doing major changes.

> ant clean test

To run the full suite of testcases in tez mode with Hadoop 2.x. This is a shortcut which takes care of adding .-Dexectype=tez Usually you don't have to
run this unless you are doing major changes.

> ant clean test-tez

To run a single testcase with Hadoop 2.x. You can do this to verify the new tests that you have added or run specific testcases affected by your patch.

> ant clean test -Dtestcase=TestEvalPipeline

To run a single testcase with Hadoop 2.x and tez as execution engine

> ant clean test -Dtestcase=TestEvalPipeline2 -Dexectype=tez

To run the core set of unit tests follow below steps. Please make sure that all the core unit tests and the tests you wrote succeed before constructing your
patch.

> cd trunk
> ant -Djavac.args="-Xlint -Xmaxwarns 1000" clean test-commit

This should run in around 20 minutes.

After a while, if you see

BUILD SUCCESSFUL

all is ok, but if you see

BUILD FAILED

then please examine error messages in build/test and fix things before proceeding.

Javadoc

Please also check the javadoc.

> ant docs
> firefox build/docs/api/index.html

Examine all public classes you've changed to see that documentation is complete and informative. Your patch must not generate any javadoc warnings.

https://builds.apache.org/job/Pig-trunk-commit

1.
2.
3.
4.

Creating a patch

Check to see what files you have modified with:

svn stat

Add any new files with:

svn add src/.../MyNewClass.java

In order to create a patch, just type:

svn diff > myBeautifulPatch.patch

This will report all modifications done on Pig sources on your local disk and save them into the myBeautifulPath.patch file. Read the patch file. Make sure it
includes ONLY the modifications required to fix a single issue.

Please do not:

reformat code unrelated to the bug being fixed: formatting changes should be separate patches/commits.
comment out code that is now obsolete: just remove it.
insert comments around each change, marking the change: folks can use subversion to figure out what's changed and by whom.
make things public which are not required by end users.

Please do:

try to adhere to the coding style of files you edit;
comment code whose function or rationale is not obvious;
update documentation (e.g., package.html files, this wiki, etc.)

If you need to rename files in your patch:

Write a shell script that uses 'svn mv' to rename the original files.
Edit files as needed (e.g., to change package names).
Create a patch file with 'svn diff --no-diff-deleted --notice-ancestry'.
Submit both the shell script and the patch file.
This way other developers can preview your change by running the script and then applying the patch.

Creating a patch with git

If working from a git repo, please be aware the the default diff format will not apply in SVN repos. Please generate patches with the option --no-prefix
so they apply cleanly.

git diff --no-prefix

h3. Testing a patch ()Ignore this section for now

You can run the same tools that the automated Jenkins patch test system will run on a patch. This enables you to fix problems with your patch once
Jenkins or a committer points them out. The Ant target will run your patch through the same checks that Jenkins currently does for test-patch except
executing the core and contrib unit tests.

To use this target, you must run it from a clean workspace (ie shows no modifications or additions). From your clean workspace, run:svn stat

ant \
 -Dpatch.file=/patch/to/my.patch \
 -Dforrest.home=/path/to/forrest/ \
 -Dfindbugs.home=/path/to/findbugs \
 -Djava5.home=/patch/to/java5home \
 -Dscratch.dir=/path/to/a/temp/dir \ (optional)
 -Dsvn.cmd=/path/to/subversion/bin/svn \ (optional)
 -Dgrep.cmd=/path/to/grep \ (optional)
 -Dpatch.cmd=/path/to/patch \ (optional)
 test-patch

At the end, you should get a message on your console that is similar to the comment added to Jira by Jenkins' automated patch test system. The scratch
directory (which defaults to the value of ${user.home}/tmp) will contain some output files that will be useful in determining what issues were found in the
patch.

1.

Some things to note:

the optional cmd parameters will default to the ones in your environment variablePATH
the command must support the -o flag (GNU does)grep
the command must support the -E flagpatch
you may need to explicitly set ANT_HOME. Running will tell you the default value on your system.ant -diagnostics

Applying a patch

To apply a patch either you generated or found from JIRA, from the directory you can issuetrunk

patch -p0 <cool_patch.patch

if you just want to check whether the patch applies you can run patch with --dry-run option

patch -p0 --dry-run <cool_patch.patch

If you are an Eclipse user, you can apply a patch by :

Right click project name in Package Explorer,
#. Team -> Apply Patch

Contributing your work

Finally, patches should be attached to a bug report in via the Attach File link on the jira. Please note that the attachment should be granted license to Jira
ASF for inclusion in ASF works (as per the subsection 5).Apache License

When you believe that your patch is ready to be committed, select the link on the issue's Jira. Submitted patches will be automatically Submit Patch
tested against "trunk" by Jenkins. Upon test completion, Jenkins will add a success ("+1") message or failure ("-1") to your bug report in Jira. If your WWW
issue contains multiple patch versions, Hudson tests the last patch uploaded. (Note: currently this is not working and developers are running test-patch
manually. We hope to have this fixed soon.)

Folks should run 'ant clean test-commit javadoc' before selecting 'Submit Patch'. Tests should all pass. Javadoc should report no warnings or errors.
Hudson's tests should only double-check things, and not be used as a primary patch tester, which would create too much noise on the mailing list and in
Jira.

If your patch involves performance optimizations, they should be validated by benchmarks that demonstrate an improvement.

Once a "+1" comment is received from the automated patch testing system and a "+1, code reviewed" comment is received from a code reviewer, a
committer should then evaluate it within a few days and either: commit it; or reject it with an explanation.

Please be patient. Committers are busy people too. If no one responds to your patch after a few days, please make friendly reminders. Please incorporate
other's suggestions into into your patch if you think they're reasonable. Finally, remember that even a patch that is not committed is useful to the
community.

Should your patch earn a -1 on the Jenkins test, set the issue status to 'Resume Progress', upload a patch with necessary fixes and then set the status to
'Submit Patch' again.

Committers: for non-trivial changes, you must get another committer to review your patches before commit. Use "Submit Patch" like other contributors, and
then wait for a "+1" from another committer before committing. Please also try to frequently review things in the patch queue.

Jira Guidelines

Please comment on issues in Jira, making your concerns known. Please also vote for issues that are a high priority for you.

Please refrain from editing descriptions and comments if possible, as edits spam the mailing list and clutter Jira's "All" display, which is otherwise very
useful. Instead, preview descriptions and comments using the preview button (on the right) before posting them. Keep descriptions brief and save more
elaborate proposals for comments, since descriptions are included in Jira's automatically sent messages. If you change your mind, note this in a new
comment, rather than editing an older comment. The issue should preserve this history of the discussion.

Stay involved

Contributors should join the . In particular, the commit list (to see changes as they are made), the dev list (to join discussions of changes) Pig mailing lists
and the user list (to help others).

See Also

Apache contributor documentation
Apache voting documentation

http://issues.apache.org/jira/browse/PIG
http://www.apache.org/licenses/LICENSE-2.0
#
http://pig.apache.org/mailing_lists.html
http://www.apache.org/dev/contributors.html
http://www.apache.org/foundation/voting.html

Picking Something to Work On

Looking for a place to start? A great first place is to peruse the and find an issue that needs resolved. Especially, is a list of Jiras marked as JIRA here
"newbie". If you're looking for a bigger project, try the . This gives a list of projects the Pig team would like to see worked on.Pig Journal

https://issues.apache.org/jira/browse/PIG
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+PIG+AND+%28labels+%3D+newbie+OR+labels+%3D+simple%29+and+status+%3D+open
https://cwiki.apache.org/confluence/display/PIG/Pig+Journal

	HowToContribute

