
PigMix
Pig Mix
PigMix is a set of queries used test pig performance from release to release. There are queries that test latency (how long does it take to run this query?), 
and queries that test scalability (how many fields or records can pig handle before it fails?). In addition it includes a set of map reduce java programs to run 
equivalent map reduce jobs directly. These will be used to test the performance gap between direct use of map reduce and using pig. In Jun 2010, we 
release PigMix2, which include 5 more queries in addition to the original 12 queries into PigMix to measure the performance of new Pig features. We will 
publish the result of both PigMix and PigMix2.

Usage

To run PigMix, run the following command from PIG_HOME:

ant -Dharness.hadoop.home=$HADOOP_HOME pigmix-deploy (generate test dataset)
ant -Dharness.hadoop.home=$HADOOP_HOME pigmix (run the PigMix benchmark)

You can optionally set HADOOP_CONF_DIR before run.

If you want to change the default size of test dataset, change test/perf/pigmix/conf/config.sh.

Note the PigMix is checked in to Pig 0.12 and beyond. If you want to run it in earlier version of Pig, Please go to https://issues.apache.org/jira/browse/PIG-
 and use PIG-200-0.12.patch.200

Runs

PigMix

The following table includes runs done of the pig mix. All of these runs have been done on a cluster with 26 slaves plus one machine acting as the name 
node and job tracker. The cluster was running hadoop version 0.18.1. (TODO: Need to get specific hardware info on those machines).

The tests were run against two versions of pig: top of trunk, and top of types branch both as of Nov 21 2008.

The tests were run three times for each version and the results averaged.

tot = top of trunk
totb = top of types branch

Version Map Reduce Java 
Code

tot 11/21
/08

totb 11/21
/08

totb 1/20
/09

tot 2/23
/09

Date Run 11/22/08 11/21/08 11/21/08 1/20/09 2/23/09

L1 explode 116 261 283 218 205

L2 fr join 41 1665 253 168 89

L3 join 97 1912 320 258 254

L4 distinct agg 68 254 193 110 116

L5 anti-join 90 1535 281 209 112

L6 large group by key 61 294 226 126 120

L7 nested split 72 243 204 107 102

L8 group all 56 462 194 104 103

L9 order by 1 field 286 5294 867 851 444

L10 order by multiple 
fields

634 1403 565 469 447

L11 distinct + union 120 316 255 164 154

L12 multi-store 150 fails 781 499 804

Total time 1791 13638 4420 3284 2950

Compared to hadoop 1.0 7.6 2.5 1.8 1.6

Weighted Average 1.0 11.2 3.26 2.20 1.97

The totb run of 1/20/09 includes the change to make BufferedPositionedInputStream use a buffer instead of relying on hadoop to buffer.

tot run of 2/23/09, top of trunk is now what was on the types branch (that is proto 0.2.0). This run includes fragment replicate join and rework of partitioning 
for order by.

Run of 5/28/09, placed in a separate table because there were underlying cluster changes, thus the map reduce tests needed to be rerun. This is the same 
code base that became 0.3.0.

https://issues.apache.org/jira/browse/PIG-200
https://issues.apache.org/jira/browse/PIG-200


Version Map Reduce Java 
code

tot 5/27
/09

Date Run 5/28/09 5/28/09

L1 explode 119 205

L2 fr join 44 110

L3 join 113 314

L4 distinct agg 76 153

L5 anti-join 96 128

L6 large group by key 67 148

L7 nested split 67 133

L8 group all 64 115

L9 order by 1 field 329 563

L10 order by multiple 
fields

607 532

L11 distinct + union 106 203

L12 multi-store 139 159

Total time 1826 2764

Compared to hadoop N/A 1.5

Weighted average N/A 1.83

Run date: June 28, 2009, run against top of trunk as of that day.
Note that the columns got reversed in this one (Pig then MR)

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 204 117.33 1.74

PigMix_2 110.33 50.67 2.18

PigMix_3 292.33 125 2.34

PigMix_4 149.67 85.33 1.75

PigMix_5 131.33 105 1.25

PigMix_6 146.33 65.33 2.24

PigMix_7 128.33 82 1.57

PigMix_8 126.33 63.67 1.98

PigMix_9 506.67 312.67 1.62

PigMix_10 555 643 0.86

PigMix_11 206.33 136.67 1.51

PigMix_12 173 161.67 1.07

Total 2729.67 1948.33 1.40

Weighted 
avg

    1.68

Run date: August 27, 2009, run against top of trunk as of that day.

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 218 133.33 1.635

PigMix_2 99.333 48 2.07

PigMix_3 272 127.67 2.13

PigMix_4 142.33 76.333 1.87

PigMix_5 127.33 107.33 1.19

PigMix_6 135.67 73 1.86

PigMix_7 124.67 78.333 1.59

PigMix_8 117.33 68 1.73

PigMix_9 356.33 323.67 1.10

PigMix_10 511.67 684.33 0.75



PigMix_11 180 121 1.49

PigMix_12 156 160.67 0.97

Total 2440.67 2001.67 1.22

Weighted 
avg

    1.53

Run date: October 18, 2009, run against top of trunk as of that day.
With this run we included a new measure, weighted average. Our previous multiplier that we have been publishing takes the total time of running all 12 Pig 
Latin scripts and compares it to the total time of running all 12 Java Map Reduce programs. This is a valid way to measure, as it shows the total amount of 
time to do all these operations on both platforms. But it has the drawback that it gives more weight to long running operations (such as joins and order bys) 
while masking the performance in faster operations such as group bys. The new "weighted average" adds up the multiplier for each Pig Latin script vs. 
Java program separately and then divides by 12, thus weighting each test equally. In past runs the weighted average had significantly lagged the overall 
average (for example, in the run above for August 27 it was 1.5 even though the total difference was 1.2). With this latest run it still lags some, but the gap 
has shrunk noticably.

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 135.0 133.0 1.02

PigMix_2 46.67 39.33 1.19

PigMix_3 184.0 98.0 1.88

PigMix_4 71.67 77.67 0.92

PigMix_5 70.0 83.0 0.84

PigMix_6 76.67 61.0 1.26

PigMix_7 71.67 61.0 1.17

PigMix_8 43.33 47.67 0.91

PigMix_9 184.0 209.33 0.88

PigMix_10 268.67 283.0 0.95

PigMix_11 145.33 168.67 0.86

PigMix_12 55.33 95.33 0.58

Total 1352.33 1357 1.00

Weighted 
avg

    1.04

Run date: January 4, 2010, run against 0.6 branch as of that day

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 138.33 112.67 1.23

PigMix_2 66.33 39.33 1.69

PigMix_3 199 83.33 2.39

PigMix_4 59 60.67 0.97

PigMix_5 80.33 113.67 0.71

PigMix_6 65 77.67 0.84

PigMix_7 63.33 61 1.04

PigMix_8 40 47.67 0.84

PigMix_9 214 215.67 0.99

PigMix_10 284.67 284.33 1.00

PigMix_11 141.33 151.33 0.93

PigMix_12 55.67 115 0.48

Total 1407 1362.33 1.03

Weighted 
Avg

    1.09

PigMix2

Run date: May 29, 2010, run against top of trunk as of that day.

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 122.33 117 1.05

PigMix_2 50.33 42.67 1.18



PigMix_3 189 100.33 1.88

PigMix_4 75.67 61 1.24

PigMix_5 64 138.67 0.46

PigMix_6 65.67 69.33 0.95

PigMix_7 88.33 84.33 1.05

PigMix_8 39 47.67 0.82

PigMix_9 274.33 215.33 1.27

PigMix_10 333.33 311.33 1.07

PigMix_11 151.33 157 0.96

PigMix_12 70.67 97.67 0.72

PigMix_13 80 33 2.42

PigMix_14 69 86.33 0.80

PigMix_15 80.33 69.33 1.16

PigMix_16 82.33 69.33 1.19

PigMix_17 286 229.33 1.25

Total 2121.67 1929.67 1.10

Weighted 
Avg

    1.15

Run date: Jun 11, 2011, run against top of trunk as of that day.

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 130 139 0.94

PigMix_2 66 48.67 1.36

PigMix_3 138 107.33 1.29

PigMix_4 106 78.33 1.35

PigMix_5 135.67 114 1.19

PigMix_6 103.67 74.33 1.39

PigMix_7 77.67 77.33 1.00

PigMix_8 56.33 57 0.99

PigMix_9 384.67 280.33 1.37

PigMix_10 380 354.67 1.07

PigMix_11 164 141 1.16

PigMix_12 109.67 187.33 0.59

PigMix_13 78 44.33 1.76

PigMix_14 105.33 111.67 0.94

PigMix_15 89.67 87 1.03

PigMix_16 87.67 75.33 1.16

PigMix_17 171.33 152.33 1.12

Total 2383.67 2130 1.12

Weighted 
Avg

    1.16

Pig 0.9.2

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 146 147 0.99319727891156
5

PigMix_2 73 61 1.19672131147541

PigMix_3 134 158 0.84810126582278
5

PigMix_4 91 87 1.04597701149425

PigMix_5 81 153 0.52941176470588
2

PigMix_6 91 81 1.12345679012346

PigMix_7 71 86 0.82558139534883
7



PigMix_8 56 61 0.91803278688524
6

PigMix_9 302 192 1.57291666666667

PigMix_10 312 226 1.38053097345133

PigMix_11 207 222 0.93243243243243
2

PigMix_12 96 163 0.58895705521472
4

PigMix_13 76 127 0.59842519685039
4

PigMix_14 94 157 0.59872611464968
2

PigMix_15 86 92 0.93478260869565
2

PigMix_16 80 82 0.97560975609756
1

PigMix_17 196 176 1.11363636363636

Total 2192 2271 0.965213562

Weighted 
Avg

    0.951558634

Pig 0.10.1

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 147 146 1.00684931506849

PigMix_2 74 62 1.19354838709677

PigMix_3 140 158 0.88607594936708
9

PigMix_4 87 86 1.01162790697674

PigMix_5 81 153 0.52941176470588
2

PigMix_6 92 262 0.35114503816793
9

PigMix_7 76 86 0.88372093023255
8

PigMix_8 62 61 1.01639344262295

PigMix_9 303 187 1.62032085561497

PigMix_10 303 232 1.30603448275862

PigMix_11 188 218 0.86238532110091
7

PigMix_12 101 157 0.64331210191082
8

PigMix_13 82 132 0.62121212121212
1

PigMix_14 99 158 0.62658227848101
3

PigMix_15 82 91 0.90109890109890
1

PigMix_16 82 82 1

PigMix_17 206 177 1.1638418079096

Total 2205 2448 0.90073529411764
7

Weighted 
Avg

    0.919032977

Pig 0.11.1

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 163 141 1.15602836879433

PigMix_2 66 61 1.08196721311475

PigMix_3 141 158 0.89240506329113
9

PigMix_4 87 86 1.01162790697674

PigMix_5 82 158 0.51898734177215
2



1.  
2.  
3.  
4.  
5.  
6.  
7.  

PigMix_6 92 81 1.1358024691358

PigMix_7 82 87 0.94252873563218
4

PigMix_8 63 62 1.01612903225806

PigMix_9 320 207 1.54589371980676

PigMix_10 311 226 1.37610619469027

PigMix_11 184 218 0.84403669724770
6

PigMix_12 97 158 0.61392405063291
1

PigMix_13 78 127 0.61417322834645
7

PigMix_14 101 158 0.63924050632911
4

PigMix_15 87 91 0.95604395604395
6

PigMix_16 82 87 0.94252873563218
4

PigMix_17 203 176 1.15340909090909

Total 2239 2282 0.98115687992988
6

Weighted 
Avg

    0.967107783

Pig 0.12 (4/4/2013)

Test Pig run 
time

Java run 
time

Multiplier

PigMix_1 168 142 1.1830985915493

PigMix_2 71 62 1.14516129032258

PigMix_3 141 158 0.89240506329113
9

PigMix_4 93 87 1.06896551724138

PigMix_5 87 158 0.55063291139240
5

PigMix_6 93 81 1.14814814814815

PigMix_7 77 87 0.88505747126436
8

PigMix_8 62 57 1.08771929824561

PigMix_9 310 192 1.61458333333333

PigMix_10 311 221 1.40723981900452

PigMix_11 190 217 0.87557603686635
9

PigMix_12 102 158 0.64556962025316
5

PigMix_13 77 133 0.57894736842105
3

PigMix_14 101 343 0.29446064139941
7

PigMix_15 87 86 1.01162790697674

PigMix_16 82 82 1

PigMix_17 207 177 1.16949152542373

Total 2259 2441 0.92544039328144
2

Weighted 
Avg

    0.974040267

Features Tested

Based on a sample of user queries, PigMix includes tests for the following features.

Data with many fields, but only a few are used.
Reading data from maps.
Use of bincond and arithmetic operators.
Exploding nested data.
Load bzip2 data
Load uncompressed data



7.  
8.  
9.  

10.  
11.  
12.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  

1.  
2.  
3.  
4.  

join with one table small enough to fit into a fragment and replicate algorithm.
join where tables are sorted and partitioned on the same key
Do a cogroup that is not immediately followed by a flatten (that is, use cogroup for something other than a straight forward join).
group by with only algebraic udfs that has nested plan (distinct aggs basically).
foreachs with nested plans including filter and implicit splits.
group by where the key accounts for a large portion of the record.
group all
union plus distinct
order by
multi-store query (that is, a query where data is scanned once, then split and grouped different ways).
outer join
merge join
multiple distinct aggregates
accumulative mode

The data is generated so that it has a zipf type distribution for the group by and join keys, as this models most human generated
data.
Some other fields are generated using a uniform data distribution.

Scalability tests test the following:

Join of very large data sets.
Grouping of very large data set.
Query with a very wide (500+ fields) row.
Loading many data sets together in one load

Proposed Data

Initially, four data sets have been created. The first, "page_views", is 10 million rows in size, with a schema of:

Name Type Average 
Length

Cardinality Distribution Percent 
Null

user string 20 1.6M zipf 7

action int X 2 uniform 0

timespent int X 20 zipf 0

query_term string 10 1.8M zipf 20

ip_addr long X 1M zipf 0

timestamp long X 86400 uniform 0

estimated_revenu
e

double X 100k zipf 5

page_info map 15 X zipf 0

page_links bag of 
maps

50 X zipf 20

The second, "users", was created by taking the unique user keys from "page_views" and adding additional columns.

Name Type Average 
Length

Cardinality Distribution Percent 
Null

name string 20 1.6M unique 7

phone string 10 1.6M zipf 20

address string 20 1.6M zipf 20

city string 10 1.6M zipf 20

state string 2 1.6M zipf 20

zip int X 1.6M zipf 20

The third, "power_users", has 500 rows, and has the same schema as users. It was generated by skimming 500 unique names from
users. This will produce a table that can be used to test fragment replicate type joins.

The fourth, "widerow", has a very wide row (500 fields), consisting of one string and 499 integers.

"users", "power_users", and "widerow" are written in ASCII format, using Ctrl-A as the field delimiter. They can be read using
PigStorage.

"page_views" is written in as text data, with Ctrl-A as the field delimiter. Maps in the file are delimited by Ctrl-C
between key value pairs and Ctrl-D between keys and values. Bags in the file are delimited by Ctrl-B between tuples in the bag.
A special loader, PigPerformance loader has been written to read this format.

PigMix2 include 4 more data set, which can be derived from the original dataset:



A = load 'page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp, estimated_revenue, page_info, page_links);
B = order A by user $parallelfactor;
store B into 'page_views_sorted' using PigStorage('\u0001');

alpha = load 'users' using PigStorage('\u0001') as (name, phone, address, city, state, zip);
a1 = order alpha by name $parallelfactor;
store a1 into 'users_sorted' using PigStorage('\u0001');

a = load 'power_users' using PigStorage('\u0001') as (name, phone, address, city, state, zip);
b = sample a 0.5;
store b into 'power_users_samples' using PigStorage('\u0001');

A = load 'page_views' as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, action, timespent, query_term, ip_addr, timestamp, estimated_revenue, page_info, 
page_links,
user as user1, action as action1, timespent as timespent1, query_term as query_term1, ip_addr as ip_addr1, 
timestamp as timestamp1, estimated_revenue as estimated_revenue1, page_info as page_info1, page_links as 
page_links1,
user as user2, action as action2, timespent as timespent2, query_term as query_term2, ip_addr as ip_addr2, 
timestamp as timestamp2, estimated_revenue as estimated_revenue2, page_info as page_info2, page_links as 
page_links2;
store B into 'widegroupbydata';

Proposed Scripts

Scalability

Script S1

This script tests grouping, projecting, udf envocation, and filtering with a very wide row. Covers scalability feature 3.

A = load '$widerow' using PigStorage('\u0001') as (name: chararray, c0: int, c1: int, ..., c500: int);
B = group A by name parallel $parrallelfactor;
C = foreach B generate group, SUM(A.c0) as c0, SUM(A.c1) as c1, ... SUM(A.c500) as c500;
D = filter C by c0 > 100 and c1 > 100 and c2 > 100 ... and c500 > 100;
store D into '$out';

Script S2
This script tests joining two inputs where a given value of the join key appears many times in both inputs. This will test pig's
ability to handle large joins. It covers scalability features 1 and 2.

TBD

Features not yet tested: 4.

Latency

Script L1

This script tests reading from a map, flattening a bag of maps, and use of bincond (features 2, 3, and 4).



register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, (int)action as action, (map[])page_info as page_info,
    flatten((bag{tuple(map[])})page_links) as page_links;
C = foreach B generate user,
    (action == 1 ? page_info#'a' : page_links#'b') as header;
D = group C by user parallel 40;
E = foreach D generate group, COUNT(C) as cnt;
store E into 'L1out';

Script L2

This script tests using a join small enough to do in fragment and replicate (feature 7).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, estimated_revenue;
alpha = load '/user/pig/tests/data/pigmix/power_users' using PigStorage('\u0001') as (name, phone,
        address, city, state, zip);
beta = foreach alpha generate name;
C = join B by user, beta by name using 'replicated' parallel 40;
store C into 'L2out';

Script L3

This script tests a join too large for fragment and replicate. It also contains a join followed by a group by on the same key,
something that pig could potentially optimize by not regrouping.

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, (double)estimated_revenue;
alpha = load '/user/pig/tests/data/pigmix/users' using PigStorage('\u0001') as (name, phone, address,
        city, state, zip);
beta = foreach alpha generate name;
C = join beta by name, B by user parallel 40;
D = group C by $0 parallel 40;
E = foreach D generate group, SUM(C.estimated_revenue);
store E into 'L3out';

Script L4

This script covers foreach generate with a nested distinct (feature 10).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, action;
C = group B by user parallel 40;
D = foreach C {
    aleph = B.action;
    beth = distinct aleph;
    generate group, COUNT(beth);
}
store D into 'L4out';



Script L5

This script does an anti-join. This is useful because it is a use of cogroup that is not a regular join (feature 9).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user;
alpha = load '/user/pig/tests/data/pigmix/users' using PigStorage('\u0001') as (name, phone, address,
        city, state, zip);
beta = foreach alpha generate name;
C = cogroup beta by name, B by user parallel 40;
D = filter C by COUNT(beta) == 0;
E = foreach D generate group;
store E into 'L5out';

Script L6

This script covers the case where the group by key is a significant percentage of the row (feature 12).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, action, (int)timespent as timespent, query_term, ip_addr, timestamp;
C = group B by (user, query_term, ip_addr, timestamp) parallel 40;
D = foreach C generate flatten(group), SUM(B.timespent);
store D into 'L6out';

Script L7

This script covers having a nested plan with splits (feature 11).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
as (user, action, timespent, query_term,
            ip_addr, timestamp, estimated_revenue, page_info, page_links);
B = foreach A generate user, timestamp;
C = group B by user parallel 40;
D = foreach C {
    morning = filter B by timestamp < 43200;
    afternoon = filter B by timestamp >= 43200;
    generate group, COUNT(morning), COUNT(afternoon);
}
store D into 'L7out';

Script L8

This script covers group all (feature 13).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, (int)timespent as timespent, (double)estimated_revenue as estimated_revenue;
C = group B all;
D = foreach C generate SUM(B.timespent), AVG(B.estimated_revenue);
store D into 'L8out';

Script L9



This script covers order by of a single value (feature 15).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = order A by query_term parallel 40;
store B into 'L9out';

Script L10

This script covers order by of multiple values (feature 15).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent:int, query_term, ip_addr, timestamp,
        estimated_revenue:double, page_info, page_links);
B = order A by query_term, estimated_revenue desc, timespent parallel 40;
store B into 'L10out';

Script L11

This script covers distinct and union and reading from a wide row but using only one field (features: 1, 14).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user;
C = distinct B parallel 40;
alpha = load '/user/pig/tests/data/pigmix/widerow' using PigStorage('\u0001');
beta = foreach alpha generate $0 as name;
gamma = distinct beta parallel 40;
D = union C, gamma;
E = distinct D parallel 40;
store E into 'L11out';

Script L12

This script covers multi-store queries (feature 16).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links);
B = foreach A generate user, action, (int)timespent as timespent, query_term,
    (double)estimated_revenue as estimated_revenue;
split B into C if user is not null, alpha if user is null;
split C into D if query_term is not null, aleph if query_term is null;
E = group D by user parallel 40;
F = foreach E generate group, MAX(D.estimated_revenue);
store F into 'highest_value_page_per_user';
beta = group alpha by query_term parallel 40;
gamma = foreach beta generate group, SUM(alpha.timespent);
store gamma into 'total_timespent_per_term';
beth = group aleph by action parallel 40;
gimel = foreach beth generate group, COUNT(aleph);
store gimel into 'queries_per_action';

Script L13 (PigMix2 only)

This script covers outer join (feature 17).



register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
        as (user, action, timespent, query_term, ip_addr, timestamp, estimated_revenue, page_info, page_links);
B = foreach A generate user, estimated_revenue;
alpha = load '/user/pig/tests/data/pigmix/power_users_samples' using PigStorage('\u0001') as (name, phone, 
address, city, state, zip);
beta = foreach alpha generate name, phone;
C = join B by user left outer, beta by name parallel 40;
store C into 'L13out';

Script L14 (PigMix2 only)

This script covers merge join (feature 18).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views_sorted' using org.apache.pig.test.udf.storefunc.
PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp, estimated_revenue, page_info, page_links);
B = foreach A generate user, estimated_revenue;
alpha = load '/user/pig/tests/data/pigmix/users_sorted' using PigStorage('\u0001') as (name, phone, address, 
city, state, zip);
beta = foreach alpha generate name;
C = join B by user, beta by name using 'merge';
store C into 'L14out';

Script L15 (PigMix2 only)

This script covers multiple distinct aggregates (feature 19).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp, estimated_revenue, page_info, page_links);
B = foreach A generate user, action, estimated_revenue, timespent;
C = group B by user parallel 40;
D = foreach C {
    beth = distinct B.action;
    rev = distinct B.estimated_revenue;
    ts = distinct B.timespent;
    generate group, COUNT(beth), SUM(rev), (int)AVG(ts);
}
store D into 'L15out';

Script L16 (PigMix2 only)

This script covers accumulative mode (feature 20).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp, estimated_revenue, page_info, page_links);
B = foreach A generate user, estimated_revenue;
C = group B by user parallel 40;
D = foreach C {
    E = order B by estimated_revenue;
    F = E.estimated_revenue;
    generate group, SUM(F);
}

store D into 'L16out';

Script L17 (PigMix2 only)



This script covers wide key group (feature 12).

register pigperf.jar;
A = load '/user/pig/tests/data/pigmix/widegroupbydata' using org.apache.pig.test.udf.storefunc.
PigPerformanceLoader()
    as (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, page_info, page_links, user_1, action_1, timespent_1, query_term_1, ip_addr_1, 
timestamp_1,
        estimated_revenue_1, page_info_1, page_links_1, user_2, action_2, timespent_2, query_term_2, ip_addr_2, 
timestamp_2,
        estimated_revenue_2, page_info_2, page_links_2);
B = group A by (user, action, timespent, query_term, ip_addr, timestamp,
        estimated_revenue, user_1, action_1, timespent_1, query_term_1, ip_addr_1, timestamp_1,
        estimated_revenue_1, user_2, action_2, timespent_2, query_term_2, ip_addr_2, timestamp_2,
        estimated_revenue_2) parallel 40;
C = foreach B generate SUM(A.timespent), SUM(A.timespent_1), SUM(A.timespent_2), AVG(A.estimated_revenue), AVG
(A.estimated_revenue_1), AVG(A.estimated_revenue_2);
store C into 'L17out';

Features not yet covered: 5 (bzip data)

Data Generation

If you want to know the details of data generation, please see .DataGeneratorHadoop

http://wiki.apache.org/pig/DataGeneratorHadoop

	PigMix

