
BewareStdStringLiterals
The short story: in C++ code using  never use string literals except to initialize static-scoped  constants.std::string std::string
(And by the way: NeverUseStaticLocalVariables

The long story:  is all about avoiding copies. Reference counting and copy-on-write serve to maximise the sharing of a single heap-allocated std::string
char array while maintaining memory safety. When used consistently in a program it works rather nicely.

However, when mixed with classic C-style string literals  can actually  needless heap-allocated copies. Consider these innocent std::string cause
looking constructs:

void f(const std::string& s);
void g(const std::string& s = "hello");
std::string h() { return "foo"; }

void copy_surprise {
  std::string x = "x"; // 1
  f("y"); // 2
  g(); // 3
  x = h(); //4
  while (x != "end") { ... } // 4
}

Lines 1-4 all cause creation and destruction of an implicit temporary  to hold the literal value. Line 5 does this for every execution of the std::string
while loop. That's a new/memcpy/delete each time. The heap is a heavily used resource, in tight inner loops in multi-threaded code this can be a  severe
contention bottleneck that cripples scalability.

Use static class  constants or file-private constants instead. You can make global declarations file-private by using a nameless namespace std::string
(this is preferred over the use of the  keyword.)static

namespace { 
   const std::string end("end");
}
void f() { std::string x; while (x != end) {...} }

And once again NeverUseStaticLocalVariables

http://cwiki.apache.org/confluence/display/qpid/NeverUseStaticLocalVariables
http://cwiki.apache.org/confluence/display/qpid/NeverUseStaticLocalVariables

	BewareStdStringLiterals

