
1.
2.

JavaScript
Using Dynamic Languages to Implement Services

Overview

JavaScript, also known by its formal name ECMAScript, is one of the many dynamic languages that are growing in prevalence in development
environments. It provides a quick and lightweight means of creating functionality that can be run on a number of platforms. Another strength of JavaScript
is that applications can be quickly rewritten.

CXF provides support for developing services using JavaScript and ECMAScript for XML(E4X). The patterns used to develop these services are similar to
JAX-WS implementations that handle their requests and responses (either SOAP messages or SOAP payloads) as DOM documents.Provider

Implementing a Service in JavaScript

Writing a service in JavaScript is a two step process:

Define the JAX-WS style metadata.
Implement the services business logic.

Defining the Metadata

Normal Java providers typically use Java annotations to specify JAX-WS metadata. Since JavaScript does not support annotations, you use ordinary
JavaScript variables to specify metadata for JavaScript implementations. CXF treats any Javascript variable in your code whose name equals or begins
with as a JAX-WS metadata variable.WebServiceProvider

Properties of the variable are expected to specify the same metadata that the JAX-WS annotation specifies, including:WebServiceProvider

wsdlLocation specifies a URL for the WSDL defining the service.
serviceName specifies the name of the service.
portName specifies the service's port/interface name.
targetNamespace specifies the target namespace of the service.

The Javascript can also specify the following optional properties:WebServiceProvider

ServiceMode indicates whether the specified service handles SOAP payload documents or full SOAP message documents. This property
mimics the JAX-WS annotation. The default value is .ServiceMode PAYLOAD
BindingMode indicates the service binding ID URL. The default is the SOAP 1.1/HTTP binding.
EndpointAddress indicates the URL consumer applications use to communicate with this service. The property is optional but has no default.

Example 1 shows a metadata description for a JavaScript service implementation.

Example 1:JavaScript Metadata

var WebServiceProvider1 = {
 'wsdlLocation': 'file:./wsdl/hello_world.wsdl',
 'serviceName': 'SOAPService1',
 'portName': 'SoapPort1',
 'targetNamespace': 'http://apache.org/hello_world_soap_http',
};

Implementing the Service Logic

You implement the service's logic using the required property of the variable. This variable is a function that accepts one invoke WebServiceProvider
input argument, a node, and returns a document of the same type. The function can manipulate javax.xml.transform.dom.DOMSource invoke
either the input or output documents using the regular Java class interface just as a Java application would.DOMSource

Example 2 shows an property for a simple JavaScript service implementation.invoke

Example 2:JavaScript Service Implementation

WebServiceProvider.invoke = function(document) {
 var ns4 = "http://apache.org/hello_world_soap_http/types";
 var list = document.getElementsByTagNameNS(ns4, "requestType");
 var name = list.item(0).getFirstChild().getNodeValue();
 var newDoc = document.getImplementation().createDocument(ns4, "ns4:greetMeResponse", null);
 var el = newDoc.createElementNS(ns4, "ns4:responseType");
 var txt = newDoc.createTextNode("Hi " + name);
 el.insertBefore(txt, null);
 newDoc.getDocumentElement().insertBefore(el, null);
 return newDoc;
}

Implementing a Service in ECMAScript for XML(E4X)

Writing a CXF service using E4X is very similar to writing a service using JavaScript. You define the JAX-WS metadata using the same WebServiceProv
 variable in JavaScript. You also implement the service's logic in the variable's property.ider WebServiceProvider invoke

The only difference between the two approaches is the type of document the implementation manipulates. When working with E4X, the implementation
receives requests as an E4X XML document and returns a document of the same type. These documents are manipulated using built-in E4X XML
features.

Example 3 shows an property for a simple E4X service implementation.invoke

Example 3:E4X Service Implementation

var SOAP_ENV = new Namespace('SOAP-ENV',
 'http://schemas.xmlsoap.org/soap/envelope/');
var xs = new Namespace('xs', 'http://www.w3.org/2001/XMLSchema');
var xsi = new Namespace('xsi', 'http://www.w3.org/2001/XMLSchema-instance');
var ns = new Namespace('ns', 'http://apache.org/hello_world_soap_http/types');

WebServiceProvider1.invoke = function(req) {
 default xml namespace = ns;
 var name = (req..requestType)[0];
 default xml namespace = SOAP_ENV;
 var resp = <SOAP-ENV:Envelope xmlns:SOAP-ENV={SOAP_ENV} xmlns:xs={xs} xmlns:xsi={xsi}/>;
 resp.Body = <Body/>;
 resp.Body.ns::greetMeResponse = <ns:greetMeResponse xmlns:ns={ns}/>;
 resp.Body.ns::greetMeResponse.ns::responseType = 'Hi ' + name;
 return resp;
}

Deploying Scripted Services

CXF provides a lightweight container that allows you to deploy your Javascript and E4X services and take advantage of CXF's pluggable transport
infrastructure.

You deploy services into the container using the following command:

java org.apache.cxf.js.rhino.ServerApp [-a] [-b] file.js [... addressURL baseAddressURL file2.js file3.jsx
]

Note

Script based services can only work with SOAP messages. So, while they are multi-transport, they can only use the SOAP binding.

The class, shorted to below, takes one or more Javascript files, suffixed with a , or E4X files, org.apache.cxf.js.rhino.ServerApp ServerApp .js
suffixed with a , and loads them into the CXF runtime. If locates JAX-WS metadata in the files it creates and registers a JAX-WS .jsx ServerApp Provid

 object for each service. The object delegates the processing of requests to the implementation stored in the er<DOMSource> Provider<DOMSource>
associated file. can also take the name of a directory containing Javascript and E4X files. It will load all of the scripts that contain JAX-WS ServerApp
metadata, load them, and publish a service endpoint for each one.

ServerApp has three optional arguments:

Argument Description

-a addressU
RL

Specifies the address at which publishes the service endpoint implementation found in the script file following the URL.ServerApp

-b baseAddr
essURL

Specifies the base address used by when publishing the service endpoints defined by the script files. The full address for the service ServerApp
endpoints is formed by appending the service's port name to the base address.

-v Specifies that { is to run in verbose mode.ServerApp

The optional arguments take precedence over any addressing information provided in {{EndpointAddress}}properties that appear in the JAX-WS metadata.

For example, if you deployed a JavaScript service using the command shown in , your service would be deployed at Example 4 http://cxf.apache.
.org/goodness

Example 4:Deploying a Service at a Specified Address

java org.apache.cxf.js.rhino.ServerApp -a hello_world.jsxhttp://cxf.apache.org/goodness

To deploy a number of services using a common base URL you could use the command shown in . If the service defined by Example 5 hello_world.jsx
had port name of , would publish it at . If the service defined by helloWorld ServerApp http://cxf.apache.org/helloWorld goodbye_moon.js
had a port name of , would publish at .blue ServerApp http://cxf.apache.org/blue

Example 5:Deploying a Group of Services to a Base Address

java org.apache.cxf.js.rhino.ServerApp -b hello_world.jsx goodbye_moon.jshttp://cxf.apache.org

You can also combine the arguments as shown in and your service would be deployed at . Example 6 http://cxf.apache.org/goodness ServerApp
would publish three service endpoints:

The service defined by at .hello_world.jsx http://cxf.apache.org/helloWorld
The service defined by at .goodbye_moon.js http://cxf.apache.org/blue
The service defined by at .chocolate.jsx http://cxf.apache.org/goodness

Example 6:Combining the Command Line Arguments

java org.apache.cxf.js.rhino.ServerApp -b hello_world.jsx goodbye_moon.js -a http://cxf.apache.org http://cxf.
 chocolate.jsxapache.org/goodness

http://cxf.apache.org/goodness
http://cxf.apache.org/goodness
http://cxf.apache.org/goodness
http://cxf.apache.org/helloWorld
http://cxf.apache.org/blue
http://cxf.apache.org
http://cxf.apache.org/goodness
http://cxf.apache.org/helloWorld
http://cxf.apache.org/blue
http://cxf.apache.org/goodness
http://cxf.apache.org
http://cxf.apache.org/goodness
http://cxf.apache.org/goodness

	JavaScript

