Apache Geronimo With A Monitor Component (JMX and
JConsole)

The purpose of this article is to show the possibilities of server-side monitoring using Geronimo, a Java™ 2 Platform Enterprise Edition (J2EE) application
server. Monitoring an application server from inside saves network traffic, since monitored information can be analyzed, filtered, summarized, and set into
an application specific context inside the server. For example an application server could send an e-mail when the response time of our online shop gets
unacceptable big. A simple web application has been used to develop a server-side monitoring component that monitors three servlets and gives alarm
when the overall average processing time exceeds a certain given threshold.

What is needed

® JDK 5.0 (because of the used JConsole tool; it is not included in JDK1.4): http://java.sun.com/javase/downloads/index.jsp

® Standard Geronimo: http://geronimo.apache.org/downloads.htmi

® Sample Code: http://www.informatik.hs-furtwangen.de/~reich/Geronimo/GMontiorSample.zip (Contents: Sources, shell scripts, archives,
README, etc.)

Introduction

A lot of articles can be found in managing application servers with remote clients using the Java Management Extensions (JMX; http://java.sun.com/javase
/technologies/core/mntr-mgmt/javamanagement/). These management client applications describe how to connect management clients to a server and
how to retrieve information from the server applications. While much attention has been given to the client-side aspects of JMX, very little consideration
has been given to the server-side challenges of developing and deploying management beans (MBeans). The reason lays in the difficulties of
development and integration of such components. Often it is not possible at all. With the appearance of Geronimo the server-side monitoring by
implementing MBeans for monitoring servlets or EJBs is simplified.

This article shows how to monitor the application server Geronimo from inside and how detailed information querying the MBeans can be analyzed,
grouped and generated to meta data inside the server. This saves bandwidth between the management client and the server and allows to build a more
efficient controlled application server with the monitor component inside.

To keep it simple the Geronimo monitoring component is investigating the processing time of three servlets. The average of all three processing times is
built and an alarm is generated if the overall processing time is greater then a pre-defined value. How the developed monitoring component is integrated
into the Geronimo architecture and how it is deployed and managed by the JConsole http://java.sun.com/javase/technologies/core/mntr-mgmt
/javamanagement/ is content of this paper.

Overview about MBeans and GBeans

This section gives a short introduction of the management standard JMX (http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/) with
its fundamental beans, the MBeans. It explains that Geronimo can be extended by new components, if they are GBeans.

Java Management Extension

Java Management eXtension (JMX) (http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/) standardizes the managing and
monitoring of applications and services. It enables developers to write management programs for their applications in a vendor/neutral fashion. Another
important standard in the area of J2EE is JSR-77 (http://jcp.org/en/jsr/detail?id=77). JSR-77 is a standard model for managing the J2EE platform and
allows application server vendors to present performance metrics in a standard way. It defines a set of standard metric types that can be used to monitor
J2EE platforms. The following types of metrics are defined in JSR-77: range statistics, boundary statistics, bounded range statistics, count statistics, and
time statistics. Fundamental to JMX is the management bean, MBean. There are four types of MBeans (Standard, Dynamic, Model, Open), and each
provide a different level of sophistication for management and monitoring (see http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
for more details). In this paper, MBeans are used for the monitoring of servlets and for controlling the GBean monitor component.

Geronimo hosting our Monitor Component

Geronimo is in the first place a Java™ 2 Platform Enterprise Edition (J2EE) application server, but can be seen as a general service container. The main
focus of developing Geronimo was the managing and scaling of application servers. Geronimo's intention was never to re-implement a servlet or an EJB
container, but to use existing open source applications (mainly from Apache http://www.apache.org/) whenever possible, plug it together and build a new
application server.

http://java.sun.com/javase/downloads/index.jsp
http://geronimo.apache.org/downloads.html
http://www.informatik.hs-furtwangen.de/~reich/Geronimo/GMontiorSample.zip
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://jcp.org/en/jsr/detail?id=77
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://www.apache.org/

Geronimo

Monitor
Tomcat OpenEJB (developed

inthe
paper)

Geronimo Kernel

The standard Geronimo distribution comes with Apache Tomcat http://tomcat.apache.org/ and EJB container (OpenEJB http://incubator.apache.org
/openejb/) component. Extending Geronimo by a monitoring component, developed for this paper, is like Tomcat, or any other component as long as they
are GBeans, as shown in the Figure: #Geronimo extended by a monitor component. The fundamental entity within Geronimo are Geronimo Beans
(GBeans).

Geronimo Beans

Everything in Geronimo is basically a Geronimo Bean (GBean). Geronimo's kernel handles these GBeans and stores them in it s repository. By default
Geronimo uses not a database but a file directory named r eposi tory.

s

Deployment
GBean plan for

@/",@ Builder\< GReans

+

Geronimo GBean
: class

repository

Users can install their own GBeans by describing them with a deployment plan and deploy them into Geronimo by using the GBeanBuilder (see Fig. #Gero
nimo GBeans). Every GBean must implement the GBeanLi f ecycl e interface. This interface defines three methods: doSt art (), doSt op(), doFai | ()
as you see in the class diagram (Fig. #Class diagram of the management component example). The GBeanLi f ecycl e interface is the contract between
the Geronimo plug-in framework and our application, the GBean. The Geronimo framework uses dependency injection (see Fowler: Inversion of control
containers and the dependency injection pattern, Frod: Dependency injection in apache geronimo, part 1, Dependency injection in apache geronimo, part 2
) to set GBean parameters during the deployment process. There are two ways to inject information during the deployment process of GBeans:

1. getter/setter injection: framework injects information using the setter and getter methods of the GBean.
2. constructor injection: framework injects information using the constructor of the GBean, when it is instantiated.

The example of this article is using constructor injection to pass the servlet MBean names and the MBean server reference to the monitor GBean.

http://tomcat.apache.org/
http://incubator.apache.org/openejb/
http://incubator.apache.org/openejb/
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc1/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc2/

The Server-Side Monitor Component

Subject of the section is a detailed architecture description of how the GBeans and MBeans are interacting. Discussed are the developed monitor classes
and how to deploy the monitor component into Geronimo. Finally the monitor component is tested using the JConsole.

Geronimo Architecture Overview

First an overview about the integration of the monitor component into Geronimo's architecture is given in Figure #Geronimo architecture with integrated
monitor component. It shows the JMX-Layer with the MBeanServer and the MBeans, the Tomcat component and the monitor component.

Geronimo Monitor

i,

Tomcat & GBean “a,
GBean

E:- Meritor =§..q_ - L Deploy.
% Builder plan

", Componant &

es
T an
:*u 1T |i1 ™
a uh'
o g

MBean Server
Kernel Bridge

“rur.”
-

E

0

‘4
drgyan ™

J'_;.r- o

[
* /]’ generates
4-\"“. Ty, s,
“MB
MC
S Legend:
S1: ServletStatistic
S2: ServletData

53: ServletSystemnTime
MBean Server MB: MBeans
T: Thread

JMX-Layer MC: Monitor

Component

u"-""'""f
Trag k!

%

Geronimo registers each GBean as a MBean with the MBean Server, when the server is started. Tomcat http://tomcat.apache.org/, for example, consists
of several GBeans and therefore consists of several MBeans (TomcatWebContainer, TomcatWebConnector, TomcatEngine, TomcatJAASRealm, etc.).
For each servlet (S1, S2, S3) in Fig. #Geronimo architecture with integrated monitor component there exists a MBean (MBg;, MBg,, MBg3) with

information defined in the JSR-77 specification. The dashed line objects are instantiated, when the sample monitor component (Servlet Monitor GBean) is
deployed into Geronimo using the "GBean Builder". The MBeanServerKernelBridge registers each loaded GBean as a MBean (MB,,) at the MBean

server. The instantiated thread (T) retrieves information from the servlet MBeans (MBg,, MB

s1» MBg,, MBgy).

Servlets under observation

It is not the content of this article to show how to develop and deploy servlets. There is a simple security servliet example in Geronimo's user guide http://cwi
ki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html, if you want to know more about web application in Geronimo. When you unpack the
sources (found in Section #What is needed) and follow the included Readme file you can deploy a web application consisting of 3 simple servlets
(ServletStatistic, ServeletData, ServletSystemTime). Now you should be able to call the servlets. For example: http://localhost:8080/mysample/appl
/ServletSystemTime.

Server-Side Monitor Component

The server-side monitor component consists of 2 classes (see Fig. #Class diagram of the management component example):

® the \verb+ServletMonitorGBean+, which implements the GBeanLi f ecyl e interface and
® the \verb+AverageBuilder+ thread, which is doing the actual collection of data from the servlet MBeans. If the calculated average processing time
is above the threshold an alarm is generated. The alarming function is not sending an e-mail, it is only logging "ALARM" to keep the code simple.

http://tomcat.apache.org/
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://localhost:8080/mysample/app1/ServletSystemTime
http://localhost:8080/mysample/app1/ServletSystemTime

<<GBeanLifecycle>=

+doStart ()

+doStop () Thread

+doFaili()
¢ +starti(]

ServletMonitorGBean

_injects _

Geronimo

Sxel+ServietManagementGBean (mref iMBeanServerRefersnce,
51 :5tring,s2:5tring,
s53:5tring)

framework

+doStart) AverageBuilder

+doStop i)

+idoFailil —getMBeanServer ()

+startCalchverags(} -:"__:__"":— +stopCalcAverages()

+stopCalcAverage () +s5etThreshold ()

+defineThreshold (threshold:int) +setlUpdateIntervalil
+runil

+definelpdatelnterval (time:int)

+getZBeanInfa(): GBeanlnfo

The Monitor GBean

The Geronimo framework is injecting information about the MBean server reference and the MBean servlet object names into the constructor during
deployment. Listing {#Listing 1] shows you how to inform the Geronimo kernel about the ability of the GBean. The GBeanl nf oBui | der is used to tell
Geronimo the name of the GBean class. Then the constructor injection is defined by addAt t r i but e to specify the three servlet MBean names, addRef er
ence to specify the MBean server reference, and set Const r uct or to specify the constructor call.

ServletMonitorGBean.java (cutout)

public static final GBeanlnfo GBEAN_I NFO
static {
GBeanl nfoBui | der i nfoB = GBeanl nfoBuil der.createStatic("ServletMnitorGBean", ServletMnitorGBean. class);
infoB. addAttri bute("servl et Namel", String.class, true);
i nfoB. addAttri bute("servl et Nane2", String.class, true);
infoB. addAttri bute("servl et Nanme3", String.class, true);
i nf oB. addRef er ence(" MBeanSer ver Ref er ence", MBeanSer ver Ref er ence. cl ass) ;
i nfoB. set Constructor(new String[] { "MBeanServerReference", "servletNanel", "servl et Nane2", "servletNane3"});

Further we want the methods, st art Cal cAver age, st opCal cAver age, def i neThr eshol d and def i neUpdat el nt er val to be available by an IMX
management client. This allows us to interact with the monitor component through a MBean using the JConsole as shown in Section #Accessing Geronimo
using JConsole. Publishing GBean methods through a MBean is done by the addQper at i on of the GBeanl nf oBui | der by specifying the method
names and parameters, as seen in Listing #Listing 2:

ServletMonitorGBean.java (cutout)

i nf oB. addOper ati on("start Cal cAver age");
i nf oB. addOper ati on(" st opCal cAver age");
i nfoB. addOper ati on(" defi neThreshol d", new d ass[]{int.class});
i nf oB. addOper ati on("defi neUpdatel nterval ", new O ass[]{int.class});

The MBean configuration process is finished by setting the variable GBEAN_I NFO. Thus the MBeanSer ver Ker nel Bri dge can use get GBeanl nf o() to
get a GBeanl nf o object (Listing #Listing 3) with the MBean configuration and builds the appropriate MBean MB,,~ Figure: #Geronimo architecture with

integrated monitor component.

ServletMonitorGBean.java (cutout)

GBEAN_I NFO = i nf oB. get Beanl nfo() ;
public static GBeanlnfo getGeanlnfo() { return GBEAN | NFO, }

The AverageBuilder Thread

The Aver ageBui | der class (Fig. #Class diagram of the management component example) is a thread which is querying the servlet MBeans. To query
information from servlet MBeans, like the r equest Count er, you have to know the object name of the MBean. You can find out about the object name
using a JMX management client. In the section, #Interacting with the Monitor Component, it is shown how to find out about the object names of the servlet
MBeans. Since we injected this information during the deployment process of the GBean, we are not to worry about that at the moment. Having the MBean
object name we get the information pr ecessi ngTi ne and r equest Count as follows (see Listing #Listing 4):

ServletMonitorGBean.java (cutout)

oj ect Nane obj NaneStatisticServlet = CbjectNane. getlnstance(statisticServlet);

Obj ect Nane obj NaneDat aSer vl et =Cbj ect Nane. get | nst ance(dat aServl et) ;

bj ect Nane obj NaneSyst enili neServl et = Cbj ect Nane. get | nst ance(syst enTi meServl et);

I ong pt1=((Long)nbserver.getAttribute(obj NaneStatisticServlet, "processingTinme")).longValue();
int rcl=((Integer)nbserver.getAttribute(obj NaneStatisticServlet, "requestCount")).intValue();

Doing this for all 3 servlets and building the average can be seen in the source code.

Deploying the Server-Side Monitor Component

When the GBean monitor component is compiled, it has to be deployed into Geronimo.

For deploying the monitor component everything has to be packaged according to Geronimo (see Geronimo's User Guide http://cwiki.apache.org
/GMOxDOC11/apache-geronimo-v11-users-guide.html). That means you have to pack your GBeans with a deployment-plan into a jar file, e.g. Si npl eSer
vl et Monitor-1.0.]jar and deploy it. For the deployment, we have chosen the java deployment program, deployer:

java -jar $GERONI MOHOVE/ bi n/ depl oyer.jar --user system --password manager deploy SinpleServletMnitor-1.0.jar

It is a lot faster using the deployer program, then doing all the clicking using Geronimo's browser based management tool (http:/localhost:8080/console).
With the example code, there comes also some simple Linux shell scripts supporting deployment, un-deployment, listing, etc.

Deployment Plans for Geronimo's GBeans

Geronimo's deployment plans (ger oni no- ser vi ce. xni) state information about GBean names, references and dependencies. For a more detailed
description about the deployment descriptor, see http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html. Our deployment descriptor
(Listing #Listing 5) consists of an <envi r onnent > and and <gbean> part:

geronimo-service.xml

<?xm version="1.0" encodi ng="UTF-8"?>

<nmodul e xm ns="http://geronino. apache. org/ xm / ns/ depl oynent-1. 1">
<environnent >...</envi ronnment >
<gbean ...>...</gbean>

</ modul e>

The “environment" part:

We have to give our monitor GBean an unique name inside Geronimo by defining its gr oupl d, arti f act I d, ver si on and t ype. Furthermore we have
to define <dependenci es> (see Listing: #Listing6). Because we want to inject the object reference for MBeanSer ver Ref er ence to the GBean
constructor our deployment process depends on the ger oni no/ r mi - nam ng defined as the artifactld in the ger oni no- servi ce. xnm .

The serialized version of that reference is found in the repository under: ger oni no/ r mi - nam ng.

http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://localhost:8080/console
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html

geronimo-service.xml

<envi ronnent >

<nodul el d>
<gr oupl d>nysanpl e</ gr oupl d>
<artifact!ld>Si npl eServl et Monitor</artifactld>
<versi on>1. 0</ ver si on>
<type>car</type>

</ nodul el d>

<dependenci es>
<dependency>

<gr oupl d>ger oni no</ gr oupl d>
<artifactld>rm-namng</artifactld>
<t ype>car </ type>

</ dependency>
</ dependenci es>
</ environnent >

The “gbean" part:

First you have to define the name of the GBean and the exact class name as XML attributes of the element <gbean> (see Listing: #Listing7).
Then you define all the references and attributes, which should be injected during deployment.

geronimo-service.xml

<gbean name="Ser vl et Moni t or GBBean" cl ass="de. hsfurtwangen. i nformati k. Servl et Moni t or GBean" >
<ref erence nane="MBeanSer ver Ref erence">
<nane>MBeanSer ver Ref er ence</ nane>
</reference>
<attribute name="servl et Nanel" type="java.lang.String">
Cer oni no: j 2eeType=Ser vl et, nane=Ser vl et St ati sti c, WebModul e=//1 ocal host/ nysanpl e, J2EEAppl i cati on=none,
J2EESer ver =none
</attribute>
<attribute nanme="servl et Name2" type="java.lang. String">
Ger oni no: j 2eeType=Ser vl et, name=Ser vl et Dat a, WebMbdul e=/ /| ocal host/ nmysanpl e, J2EEAppl i cat i on=none,
J2EESer ver =none
</attribute>
<attribute name="servl et Nane3" type="java.lang.String">
Cer oni no: j 2eeType=Ser vl et, nane=Ser vl et Syst enTi me, WebModul e=/ /1 ocal host/ nysanpl e, J2EEAppl i cat i on=none,
J2EESer ver =none
</attribute>
</ gbean>

As seen in our example above (Listing: #Listing7), the following parameters are injected by constructor injection of the Geronimo framework:

MBeanServerReference: The corresponding source code in the GBean class is: GBeanl nf oBui | der . addRef er ence
(" MBeanSer ver Ref erence", MBeanSer ver Ref er ence. cl ass)
servleteNamel: The corresponding source code in the GBean class is: GBeanl nf oBui | der . addAttri but e("servl et Nanel", String.

cl ass)
servletName2: The corresponding source code in the GBean class is: GBeanl nf oBui | der. addAt tri but e("servl et Name2", Stri ng.

cl ass)
servletName3: The corresponding source code in the GBean class is: GBeanl nf oBui | der. addAttri but e("servl et Nane3", Stri ng.

cl ass)

Testing the Monitor Component

Accessing Geronimo using JConsole

We want to use JConsole http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html, http://java.sun.com/j2se/1.5.0/docs/tooldocs/share
/jconsole.html, which is a IMX-compliant GUI tool that connects to a running JVM. If the JAVA_HOVE environment variable is set to a JDK 5.0, you only

have to type in:

http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html

)(J2SE 5.0 Monitoring & Management Console -

Connection

% JcConsole: Connect to Agent

[Local | Remote | Advanced |
MY URL: |5&nriu:e:jmx:rmi:H,fjndi,frmi:,.f,flucalhuzt:1099;JM}{CDnnectur |

User Name: |systerm |

Password: [T |

Connect Cancel

To connect to your Geronimo server you have to use the following settings in your JConsole (see Fig. #JConsole):

® JMXURL:service:jnx:rm:///jndi/rm://]ocal host: 1099/ JMXConnect or
® User Name: system
® Password: manager

After the management client is connected to Geronimo you switch to the MBean view (see Fig. #Servlet MBean view) and navigate to one of the deployed
servlets, e.g. Servl et St ati sti c (1st and 2nd figure of Fig. #Serviet MBean view).

" J2SE 5.0 Menitoring & Management Con

Connection

(Summary | Memory | Threads [Classes

MEeans

%Tree

o [Seronima
o [Cache
o [Cannectar £

@ Engine
o [GlobalRequestProcessar
o= [Host
o=] JkHandler

B kM ain

B |kWarkerEnw
o] |spMaonitar
o [Manager
o=] Mapper
o [ProtocalHandler
o [Realm
o [FequestProcessar
o= [Service
7 [Servat

| ¥

ireads [Classes |"MBeans | VM |

& [Serverinfa
o [ServerManager
7 [SerdetData
o [fflocalhost s ample
7- [none
none
7 [SerdetStatistic
9 [/flocalhostfrmysample
? Jnone
@
7 [SerdetsystemTime
o 1 /flecalhost mysample
% [none
@ none
o=] ystemdodules
o] ThreadPaal

anagement Console: service:jmx:rmi:///jndi/rmi://localhost:1099/JMXConnecto

f Attributes r0peratiuns |/Nutifi|:atiuns rlnfu |

i Marme Yalue
ilclassloadTime |39

§§ engineMarme Ceronima

“errorCount 0

lewertProvider [false

“|loadTime 30

HrmaxTime 40

AlrminTirme 40

“modelerTyoe org.apache. catalina core StandardWrapper

“lobjectMame Ceronimo: j2 eeType=5erdet, name =5ervietStatistic, webModule =/ flocalhost/mysample, |2 EEApplication =haone, |2 EEServer=none
processingTime |40

irequestCount 1

§§ stateManageakble [false

AlstatisticsProvider [false

i false

One interesting information is the object name (3rd figure of Fig. #Servlet MBean view)) that is used in the deployment descriptor for Geronimo's GBean

deployment plan (see section #Deployment Plans for Geronimo's GBeans).

Interacting with the Monitor Component: ServletMonitorGBean

First, navigate to the GBean (see Fig. #GBean Operations). Then you switch to the operations view. Now you have access to all the methods you defined
in the GBean with \verb+GBeanInfoBuilder+. Let's start the process by calculating the average processing time of the 3 servlets. Just click on
\verb+startCalcAverage()+ and you can see in the \verb+GERONIMO_HOME/var/log/geronimo.out+ file that the averages are calculated. Now reload the
servlets several times, so that you can see changes in the output. You could also change the update time for the information polling of the servlets. Click
first on \verb+parameterO+ and set the value to 5000 and then on \verb+defineUpdatelnterval+. Now every 5s the data is collected from the servlets.

Play around and have fun.

J25E 5.0 Monitoring & Management Console: senflce:]mx:rml:.-'.-'.-']ndi.frmi:.-’.-'Iocalhost:1099.FJMXGonnect0r____

Connection

Summary | Memory | Threads | Classes [MBeans | VM |

MEeans

@Tree

o 3 Geronimao
o=] IMImplementation
9 [geranima
o= [|2ZEEDamain
o= 7 |2 EESeryer

J[Auributes | Operations [Notifications | Info |

| lava.lang.Object

: javalang.Object

defineUpdatelnterval | (parameterd 0)

doStarnt)

o=] PhonehookFPool

o= [au.camunimelkb/ 1.0/ car

o=] com.sateh. geranimo. plugins fhelloworld,/ 1.0 jcar
o=] geranimo

o=] geronimofwebconsole-tomcat /1. 1. 1 jcar

9 [mysample/SimpleSendetMonitarf 1.0/ car

¢ [geronimo javalang.Object hashCode | ()
¢] SendetMonitorCBean
@ o| Java.lang.Object - ,7 ,7
o 9 null 2 (parameterQ 8] , parameterl 4])

o= J trangl-connectar-1.2 .rar
o= Jtrangl-connectar-1.2 .rar
o= [geronimo. config

@ Kernel java.lang.Object

]

equals (parameterd Ohbject]

|l java.lang.Object notify | ¢

¢ parameterd 0]

java.lang.Object wait

‘| java.lang.Object

notifyAll | ()

55 java.lang.Object

(parameterd 0]

startCalcAverage (9]

defineThreshold

java.lang.Object

javalang.object [gorai |

| Java.lang.Object

stopCalcAverage [§]

% javalang.Object

wait ()

f? javalang.Object

1o5tring)

java.lang.Object dostop | O)

Conclusion

An overview of the used technologies, Geronimo's GBeans and JMX has been given. You should now have an idea how to develop and deploy a monitor
component inside Geronimo application server and how to improve the monitoring. The developed example shows a server's ability to do its own
monitoring and application specific alarming. There are a lot more possibilities what can be done. For example a server could monitor the number of
servlet requests and if there are more then, e.g. 20 per seconds, there might be a denial of service attack. Analyze the monitored data inside the server
and optimize Geronimo's configuration, e.g. thread pool size. etc.

References

Sun's java management extensions (JMX) page. http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

JConsole reference. http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html.

JConsole manual. http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html.

JSR-77: J2EE management specification. http://jcp.org/en/jsr/detail?id=77.

Apache home page. http://www.apache.org/.

Tomcat home page. http://tomcat.apache.org/.

OpenEJB home page. http://incubator.apache.org/openejb/.

Martin Fowler; Inversion of control containers and the dependency injection pattern.; http://www.martinfowler.com/articles/injection.html; January;
2004.

Niel Frod; Dependency injection in apache geronimo, part 1: A new way to look at decoupling in j2ee applications.; http://www-128.ibm.com
/developerworks/opensource/library/os-ag-iocl/; February; 2006.

Niel Frod; Dependency injection in apache geronimo, part 2: The next generation.; http://www-128.ibm.com/developerworks/opensource/library
/os-ag-ioc2/; February; 2006.

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://jcp.org/en/jsr/detail?id=77
http://www.apache.org/
http://tomcat.apache.org/
http://incubator.apache.org/openejb/
http://www.martinfowler.com/articles/injection.html
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc1/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc1/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc2/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc2/

	Apache Geronimo With A Monitor Component (JMX and JConsole)

