
Apache Geronimo With A Monitor Component (JMX and
JConsole)
The purpose of this article is to show the possibilities of server-side monitoring using Geronimo, a Java 2 Platform Enterprise Edition (J2EE) application TM

server. Monitoring an application server from inside saves network traffic, since monitored information can be analyzed, filtered, summarized, and set into
an application specific context inside the server. For example an application server could send an e-mail when the response time of our online shop gets
unacceptable big. A simple web application has been used to develop a server-side monitoring component that monitors three servlets and gives alarm
when the overall average processing time exceeds a certain given threshold.

What is needed
JDK 5.0 (because of the used JConsole tool; it is not included in JDK1.4): http://java.sun.com/javase/downloads/index.jsp
Standard Geronimo: http://geronimo.apache.org/downloads.html
Sample Code: (Contents: Sources, shell scripts, archives, http://www.informatik.hs-furtwangen.de/~reich/Geronimo/GMontiorSample.zip
README, etc.)

Introduction
A lot of articles can be found in managing application servers with remote clients using the Java Management Extensions (JMX; http://java.sun.com/javase

). These management client applications describe how to connect management clients to a server and /technologies/core/mntr-mgmt/javamanagement/
how to retrieve information from the server applications. While much attention has been given to the client-side aspects of JMX, very little consideration
has been given to the server-side challenges of developing and deploying management beans (MBeans). The reason lays in the difficulties of
development and integration of such components. Often it is not possible at all. With the appearance of Geronimo the server-side monitoring by
implementing MBeans for monitoring servlets or EJBs is simplified.

This article shows how to monitor the application server Geronimo from inside and how detailed information querying the MBeans can be analyzed,
grouped and generated to meta data inside the server. This saves bandwidth between the management client and the server and allows to build a more
efficient controlled application server with the monitor component inside.

To keep it simple the Geronimo monitoring component is investigating the processing time of three servlets. The average of all three processing times is
built and an alarm is generated if the overall processing time is greater then a pre-defined value. How the developed monitoring component is integrated
into the Geronimo architecture and how it is deployed and managed by the JConsole http://java.sun.com/javase/technologies/core/mntr-mgmt

 is content of this paper./javamanagement/

Overview about MBeans and GBeans
This section gives a short introduction of the management standard JMX () with http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
its fundamental beans, the MBeans. It explains that Geronimo can be extended by new components, if they are GBeans.

Java Management Extension

Java Management eXtension (JMX) () standardizes the managing and http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
monitoring of applications and services. It enables developers to write management programs for their applications in a vendor/neutral fashion. Another
important standard in the area of J2EE is JSR-77 (). JSR-77 is a standard model for managing the J2EE platform and http://jcp.org/en/jsr/detail?id=77
allows application server vendors to present performance metrics in a standard way. It defines a set of standard metric types that can be used to monitor
J2EE platforms. The following types of metrics are defined in JSR-77: range statistics, boundary statistics, bounded range statistics, count statistics, and
time statistics. Fundamental to JMX is the management bean, MBean. There are four types of MBeans (Standard, Dynamic, Model, Open), and each
provide a different level of sophistication for management and monitoring (see http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
for more details). In this paper, MBeans are used for the monitoring of servlets and for controlling the GBean monitor component.

Geronimo hosting our Monitor Component

Geronimo is in the first place a Java 2 Platform Enterprise Edition (J2EE) application server, but can be seen as a general service container. The main TM

focus of developing Geronimo was the managing and scaling of application servers. Geronimo's intention was never to re-implement a servlet or an EJB
container, but to use existing open source applications (mainly from Apache) whenever possible, plug it together and build a new http://www.apache.org/
application server.

http://java.sun.com/javase/downloads/index.jsp
http://geronimo.apache.org/downloads.html
http://www.informatik.hs-furtwangen.de/~reich/Geronimo/GMontiorSample.zip
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://jcp.org/en/jsr/detail?id=77
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://www.apache.org/

1.
2.

The standard Geronimo distribution comes with Apache Tomcat and EJB container (OpenEJB http://tomcat.apache.org/ http://incubator.apache.org
) component. Extending Geronimo by a monitoring component, developed for this paper, is like Tomcat, or any other component as long as they /openejb/

are GBeans, as shown in the Figure: . The fundamental entity within Geronimo are Geronimo Beans #Geronimo extended by a monitor component
(GBeans).

Geronimo Beans

Everything in Geronimo is basically a Geronimo Bean (GBean). Geronimo's kernel handles these GBeans and stores them in it s repository. By default
Geronimo uses not a database but a file directory named .repository

Users can install their own GBeans by describing them with a deployment plan and deploy them into Geronimo by using the GBeanBuilder (see Fig. #Gero
). Every GBean must implement the interface. This interface defines three methods: , , nimo GBeans GBeanLifecycle doStart() doStop() doFail()

as you see in the class diagram (Fig.). The interface is the contract between #Class diagram of the management component example GBeanLifecycle
the Geronimo plug-in framework and our application, the GBean. The Geronimo framework uses dependency injection (see Fowler: Inversion of control

, Frod: , containers and the dependency injection pattern Dependency injection in apache geronimo, part 1 Dependency injection in apache geronimo, part 2
) to set GBean parameters during the deployment process. There are two ways to inject information during the deployment process of GBeans:

getter/setter injection: framework injects information using the setter and getter methods of the GBean.
constructor injection: framework injects information using the constructor of the GBean, when it is instantiated.

The example of this article is using constructor injection to pass the servlet MBean names and the MBean server reference to the monitor GBean.

http://tomcat.apache.org/
http://incubator.apache.org/openejb/
http://incubator.apache.org/openejb/
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc1/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc2/

The Server-Side Monitor Component
Subject of the section is a detailed architecture description of how the GBeans and MBeans are interacting. Discussed are the developed monitor classes
and how to deploy the monitor component into Geronimo. Finally the monitor component is tested using the JConsole.

Geronimo Architecture Overview

First an overview about the integration of the monitor component into Geronimo's architecture is given in Figure #Geronimo architecture with integrated
. It shows the JMX-Layer with the MBeanServer and the MBeans, the Tomcat component and the monitor component.monitor component

Geronimo registers each GBean as a MBean with the MBean Server, when the server is started. Tomcat , for example, consists http://tomcat.apache.org/
of several GBeans and therefore consists of several MBeans (TomcatWebContainer, TomcatWebConnector, TomcatEngine, TomcatJAASRealm, etc.).
For each servlet (S1, S2, S3) in Fig. there exists a MBean (MB , MB , MB) with #Geronimo architecture with integrated monitor component S1 S2 S3
information defined in the JSR-77 specification. The dashed line objects are instantiated, when the sample monitor component (Servlet Monitor GBean) is
deployed into Geronimo using the "GBean Builder". The MBeanServerKernelBridge registers each loaded GBean as a MBean (MB) at the MBean MC
server. The instantiated thread (T) retrieves information from the servlet MBeans (MB , MB , MB).C S1 S2 S3

Servlets under observation

It is not the content of this article to show how to develop and deploy servlets. There is a simple security servlet example in Geronimo's user guide http://cwi
, if you want to know more about web application in Geronimo. When you unpack the ki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html

sources (found in Section) and follow the included Readme file you can deploy a web application consisting of 3 simple servlets #What is needed
(ServletStatistic, ServeletData, ServletSystemTime). Now you should be able to call the servlets. For example: http://localhost:8080/mysample/app1

./ServletSystemTime

Server-Side Monitor Component

The server-side monitor component consists of 2 classes (see Fig.):#Class diagram of the management component example

the \verb+ServletMonitorGBean+, which implements the interface andGBeanLifecyle
the \verb+AverageBuilder+ thread, which is doing the actual collection of data from the servlet MBeans. If the calculated average processing time
is above the threshold an alarm is generated. The alarming function is not sending an e-mail, it is only logging "ALARM" to keep the code simple.

http://tomcat.apache.org/
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://localhost:8080/mysample/app1/ServletSystemTime
http://localhost:8080/mysample/app1/ServletSystemTime

The Monitor GBean

The Geronimo framework is injecting information about the MBean server reference and the MBean servlet object names into the constructor during
deployment. Listing {#Listing 1] shows you how to inform the Geronimo kernel about the ability of the GBean. The is used to tell GBeanInfoBuilder
Geronimo the name of the GBean class. Then the constructor injection is defined by to specify the three servlet MBean names, addAttribute addRefer

 to specify the MBean server reference, and to specify the constructor call.ence setConstructor

ServletMonitorGBean.java (cutout)

public static final GBeanInfo GBEAN_INFO;
static {
 GBeanInfoBuilder infoB = GBeanInfoBuilder.createStatic("ServletMonitorGBean", ServletMonitorGBean.class);
 infoB.addAttribute("servletName1", String.class, true);
 infoB.addAttribute("servletName2", String.class, true);
 infoB.addAttribute("servletName3", String.class, true);
 infoB.addReference("MBeanServerReference", MBeanServerReference.class);
 infoB.setConstructor(new String[] { "MBeanServerReference", "servletName1", "servletName2", "servletName3"});

Further we want the methods, , , and to be available by an JMX startCalcAverage stopCalcAverage defineThreshold defineUpdateInterval
management client. This allows us to interact with the monitor component through a MBean using the JConsole as shown in Section #Accessing Geronimo

. Publishing GBean methods through a MBean is done by the of the by specifying the method using JConsole addOperation GBeanInfoBuilder
names and parameters, as seen in Listing :#Listing 2

ServletMonitorGBean.java (cutout)

infoB.addOperation("startCalcAverage");
 infoB.addOperation("stopCalcAverage");
 infoB.addOperation("defineThreshold",new Class[]{int.class});
 infoB.addOperation("defineUpdateInterval",new Class[]{int.class});

The MBean configuration process is finished by setting the variable . Thus the can use to GBEAN_INFO MBeanServerKernelBridge getGBeanInfo()
get a object (Listing) with the MBean configuration and builds the appropriate MBean MB Figure: GBeanInfo #Listing 3 MC #Geronimo architecture with

.integrated monitor component

ServletMonitorGBean.java (cutout)

GBEAN_INFO = infoB.getBeanInfo();
public static GBeanInfo getGBeanInfo() { return GBEAN_INFO; }

The AverageBuilder Thread

The class (Fig.) is a thread which is querying the servlet MBeans. To query AverageBuilder #Class diagram of the management component example
information from servlet MBeans, like the , you have to know the object name of the MBean. You can find out about the object name requestCounter
using a JMX management client. In the section, , it is shown how to find out about the object names of the servlet #Interacting with the Monitor Component
MBeans. Since we injected this information during the deployment process of the GBean, we are not to worry about that at the moment. Having the MBean
object name we get the information and as follows (see Listing):precessingTime requestCount #Listing 4

ServletMonitorGBean.java (cutout)

ObjectName objNameStatisticServlet = ObjectName.getInstance(statisticServlet);
ObjectName objNameDataServlet=ObjectName.getInstance(dataServlet);
ObjectName objNameSystemTimeServlet = ObjectName.getInstance(systemTimeServlet);
long pt1=((Long)mbserver.getAttribute(objNameStatisticServlet, "processingTime")).longValue();
int rc1=((Integer)mbserver.getAttribute(objNameStatisticServlet, "requestCount")).intValue();

Doing this for all 3 servlets and building the average can be seen in the source code.

Deploying the Server-Side Monitor Component

When the GBean monitor component is compiled, it has to be deployed into Geronimo.
For deploying the monitor component everything has to be packaged according to Geronimo (see Geronimo's User Guide http://cwiki.apache.org

). That means you have to pack your GBeans with a deployment-plan into a jar file, e.g. /GMOxDOC11/apache-geronimo-v11-users-guide.html SimpleSer
 and deploy it. For the deployment, we have chosen the java deployment program, deployer:vletMonitor-1.0.jar

java -jar $GERONIMOHOME/bin/deployer.jar --user system --password manager deploy SimpleServletMonitor-1.0.jar

It is a lot faster using the deployer program, then doing all the clicking using Geronimo's browser based management tool (). http://localhost:8080/console
With the example code, there comes also some simple Linux shell scripts supporting deployment, un-deployment, listing, etc.

Deployment Plans for Geronimo's GBeans

Geronimo's deployment plans () state information about GBean names, references and dependencies. For a more detailed geronimo-service.xml
description about the deployment descriptor, see . Our deployment descriptor http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
(Listing) consists of an and and part:#Listing 5 <environment> <gbean>

geronimo-service.xml

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="http://geronimo.apache.org/xml/ns/deployment-1.1">
 <environment>...</environment>
 <gbean ...>...</gbean>
</module>

The ``environment'' part:

We have to give our monitor GBean an unique name inside Geronimo by defining its , , and . Furthermore we have groupId artifactId version type
to define (see Listing:). Because we want to inject the object reference for to the GBean <dependencies> #Listing6 MBeanServerReference
constructor our deployment process depends on the defined as the artifactId in the .geronimo/rmi-naming geronimo-service.xml
The serialized version of that reference is found in the repository under: .geronimo/rmi-naming

http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html
http://localhost:8080/console
http://cwiki.apache.org/GMOxDOC11/apache-geronimo-v11-users-guide.html

geronimo-service.xml

<environment>
 <moduleId>
 <groupId>mysample</groupId>
 <artifactId>SimpleServletMonitor</artifactId>
 <version>1.0</version>
 <type>car</type>
 </moduleId>
 <dependencies>
 <dependency>
 <groupId>geronimo</groupId>
 <artifactId>rmi-naming</artifactId>
 <type>car</type>
 </dependency>
 </dependencies>
</environment>

The ``gbean'' part:

First you have to define the name of the GBean and the exact class name as XML attributes of the element (see Listing:).<gbean> #Listing7
Then you define all the references and attributes, which should be injected during deployment.

geronimo-service.xml

<gbean name="ServletMonitorGBean" class="de.hsfurtwangen.informatik.ServletMonitorGBean">
 <reference name="MBeanServerReference">
 <name>MBeanServerReference</name>
 </reference>
 <attribute name="servletName1" type="java.lang.String">
 Geronimo:j2eeType=Servlet,name=ServletStatistic,WebModule=//localhost/mysample,J2EEApplication=none,
J2EEServer=none
 </attribute>
 <attribute name="servletName2" type="java.lang.String">
 Geronimo:j2eeType=Servlet,name=ServletData,WebModule=//localhost/mysample,J2EEApplication=none,
J2EEServer=none
 </attribute>
 <attribute name="servletName3" type="java.lang.String">
 Geronimo:j2eeType=Servlet,name=ServletSystemTime,WebModule=//localhost/mysample,J2EEApplication=none,
J2EEServer=none
 </attribute>
</gbean>

As seen in our example above (Listing:), the following parameters are injected by constructor injection of the Geronimo framework:#Listing7

MBeanServerReference: The corresponding source code in the GBean class is: GBeanInfoBuilder.addReference
("MBeanServerReference",MBeanServerReference.class)
servleteName1: The corresponding source code in the GBean class is: GBeanInfoBuilder.addAttribute("servletName1",String.
class)
servletName2: The corresponding source code in the GBean class is: GBeanInfoBuilder.addAttribute("servletName2",String.
class)
servletName3: The corresponding source code in the GBean class is: GBeanInfoBuilder.addAttribute("servletName3",String.
class)

Testing the Monitor Component

Accessing Geronimo using JConsole

We want to use JConsole , http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html http://java.sun.com/j2se/1.5.0/docs/tooldocs/share
, which is a JMX-compliant GUI tool that connects to a running JVM. If the environment variable is set to a JDK 5.0, you only /jconsole.html JAVA_HOME

have to type in:

http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html

To connect to your Geronimo server you have to use the following settings in your JConsole (see Fig.):#JConsole

JMX URL: service:jmx:rmi:///jndi/rmi://localhost:1099/JMXConnector
User Name: system
Password: manager

After the management client is connected to Geronimo you switch to the MBean view (see Fig.) and navigate to one of the deployed #Servlet MBean view
servlets, e.g. (1st and 2nd figure of Fig.).ServletStatistic #Servlet MBean view

One interesting information is the object name (3rd figure of Fig.)) that is used in the deployment descriptor for Geronimo's GBean #Servlet MBean view
deployment plan (see section).#Deployment Plans for Geronimo's GBeans

Interacting with the Monitor Component: ServletMonitorGBean

First, navigate to the GBean (see Fig.). Then you switch to the operations view. Now you have access to all the methods you defined #GBean Operations
in the GBean with \verb+GBeanInfoBuilder+. Let's start the process by calculating the average processing time of the 3 servlets. Just click on
\verb+startCalcAverage()+ and you can see in the \verb+GERONIMO_HOME/var/log/geronimo.out+ file that the averages are calculated. Now reload the
servlets several times, so that you can see changes in the output. You could also change the update time for the information polling of the servlets. Click
first on \verb+parameter0+ and set the value to 5000 and then on \verb+defineUpdateInterval+. Now every 5s the data is collected from the servlets.
Play around and have fun.

Conclusion
An overview of the used technologies, Geronimo's GBeans and JMX has been given. You should now have an idea how to develop and deploy a monitor
component inside Geronimo application server and how to improve the monitoring. The developed example shows a server's ability to do its own
monitoring and application specific alarming. There are a lot more possibilities what can be done. For example a server could monitor the number of
servlet requests and if there are more then, e.g. 20 per seconds, there might be a denial of service attack. Analyze the monitored data inside the server
and optimize Geronimo's configuration, e.g. thread pool size. etc.

References
Sun's java management extensions (JMX) page. .http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
JConsole reference. .http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html
JConsole manual. .http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
JSR-77: J2EE management specification. .http://jcp.org/en/jsr/detail?id=77
Apache home page. .http://www.apache.org/
Tomcat home page. .http://tomcat.apache.org/
OpenEJB home page. .http://incubator.apache.org/openejb/
Martin Fowler; ; ; January; Inversion of control containers and the dependency injection pattern. http://www.martinfowler.com/articles/injection.html
2004.
Niel Frod; ; Dependency injection in apache geronimo, part 1: A new way to look at decoupling in j2ee applications. http://www-128.ibm.com

; February; 2006./developerworks/opensource/library/os-ag-ioc1/
Niel Frod; ; Dependency injection in apache geronimo, part 2: The next generation. http://www-128.ibm.com/developerworks/opensource/library

; February; 2006./os-ag-ioc2/

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://jcp.org/en/jsr/detail?id=77
http://www.apache.org/
http://tomcat.apache.org/
http://incubator.apache.org/openejb/
http://www.martinfowler.com/articles/injection.html
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc1/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc1/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc2/
http://www-128.ibm.com/developerworks/opensource/library/os-ag-ioc2/

	Apache Geronimo With A Monitor Component (JMX and JConsole)

