
Login into Geronimo

Login Service API
Login into Geronimo is mediated by the implemented by the gbean. Login Service org.apache.geronimo.security.server.JaasLoginService
To login into the server is to establish a with the Login Service. Login Service will perform authentication based on the application security session
security requirements. Application security requirements are enforced by the . Client application tells Geronimo server the name of the security realm
security realm it wants to use. Refer to the section for a discussion on the name parameter passed by the client to the security Geronimo and JAAS
implementation.

It is useful to look briefly at the org.apache.geronimo.security.server.JaasLoginService API:

JaasSessionId connectToRealm(String realm-name)
This method allows client to select the security realm and to initiate security session. is returned to the client. Security-session-id
Client is supposed to hold on to it.

JaasLoginModuleConfiguration[] getLoginConfiguration(JaasSessionId session-id)
Return array of for the security realm associated with the .login module configurations session-id
JaasLoginModuleConfiguration includes login module name, control flag, login module options, etc.

boolean performLogin(JaasSessionId session-id, int login-configuration-idx, Callback[] callbacks)
Perform login for the login module in the security realm associated with the session-id.
Login module is selected by the login-configuration-idx.
Callbacks is the array of Callback objects required by the login module and populated by the client.

boolean performCommit(JaasSessionId session-id, int login-configuration-idx)
 login results the login modules in the security realm associated with the session-id. Commit

Login module is selected by the login-configuration-idx parameter.

Principal loginSucceed(JaasSessionId session-id)
 that overall login succeeded for the . This method returns for the session.Signal security session IdentificationPrincipal

Set synchPrincipals(JaasSessionId session-id, Set principals)
 principals between and . All principals from the client subject are added to the session subject Synchronize client-side subject session subject

and
serializable principals from the session subject are added to the client subject.

Login into Geronimo the portable way: JaasLoginCoordinator
Client side in the Geronimo login process is represented by the login org.apache.geronimo.security.jaas.client.JaasLoginCoordinator
module. drives login process using the and computes authentication result based on the JAAS JaasLoginCoordinator Geronimo Login Service API
login module combination semantics.

As a , JaasLoginCoordinator can be configured in the remote client or in the Geronimo server for use by the locally deployed component Login Module
(such as a servlet).

JaasLoginCoordinator is invoked by the JAAS framework (as any other login module would be) in a sequence of , , and calls.initialize login commit

Next you can at each step more in detail.

JaasLoginCoordinator.initialize()

On initialization step, JaasLoginCoordinator connects to the Login Service etc. Because JaasLoginCoordinator represents authentication client, it keeps it's
own Subject instance.

JaasLoginCoordinator.login()

Step 1: Initiate security session with the Login Service by calling connectToRealm(realmName); Realm name is passed as an input parameter from the
application.
A new is started by the Login Service and saved in the map. Security session identifier is returned to the security session active-logins JaasLoginCoord

.inator

Two notes should be made here:

One is that (distinct from the Subject held in the JaasLoginCoordinator). This the security session holds an instance of it's own Subject
Subject will be populated with principals from the login modules configured into security realm.

Any client that has a reference to the JaasLoginService gbean can use it's API to log into Geronimo.

https://cwiki.apache.org/confluence/display/GMOxDOC10/Geronimo+and+JAAS

The other is that each within security session contains boolean flag. If set to true, the JaasLoginModuleConfiguration wrapPrincipals
login module () will be wrapped with the special . The type of this proxy is Login Domain login module proxy org.apache.geronimo.

 and it has special behavior within it's commit() method. It produces additional that security.jaas.WrappingLoginModuleProxy Principals
hold association of a and a .principal to the login domain principal to the security realm

In particular will be added for every Principal instance instantiated by the original login module org.apache.geronimo.security.DomainPrincipal
(login domain) and RealmPrincipal will be added for each DomainPrincipal when login module is committed.

Step 2: Based on the retrieve an array of JAAS login module configurations wired into the security realm by calling: security-session-id
. For further details refer to JaasLoginModuleConfiguration[] getLoginConfiguration(JaasSessionId session-id) #JaasLoginModuleCo

 in the Login Service API section.nfiguration

Step 3: Having to account for the remote and local scenarios, the wraps each login-module in the JaasLoginCoordinator JaasLoginModuleConfigu
 array it got from the with the . are login modules themselves ration[] JaasLoginService LoginModuleProxies LoginModuleProxies

(obviously). is sub-classed with the and . is further sub-classed by LoginModuleProxy ServerLoginProxy ClientLoginProxy ClientLoginProxy
the .WrappingClientLoginProxy

We are now going to concentrate on the . In keeping with the JAAS API, login modules wrapped by the login module proxies are ServerLoginProxy
invoked with the , , and sequence.initialize login commit

There are several details you have to keep in mind about this.

The Subject instance passed to the method for every login module proxy is owned Subject instance initialize() JaasLoginCoordinator
(representing Subject on the).client side
Callback handler is passed by the client that initiated login procedure (for example a servlet).
Shared state for login modules is synchronized between (the client side) and (the server side) JaasLoginCoordinator JaasLoginService
at the end of initialization loop.

Step 4: Let the login procedure begin! Here is the place where the is actually enforced by comparing the result of the JAAS login module semantic logi
 method call for each login module proxy and login module configuration control flag. For further details on this procedure refer to the n() Geronimo and

 section.JAAS

Note that this computation is done by the which is and not by the itself.JaasLoginCoordinator authentication client JaasLoginService

Now we are going to look into what happens within the method. There is an array of that ServerLoginProxy.login() ServerLoginProxies[]
correspond to the array of retrieved from the . Each is constructor-JaasLoginModuleConfigurations[] JaasLoginService ServerLoginProxy
injected with the login-module control-flag, client-side Subject, array index, a reference to the JaasLoginService and JaasLoginModuleConfiguration

.security-session-id

ServerLoginProxy.login() method first retrieves an array of from the that are configured for the corresponding Callbacks[] JaasLoginService
login module in the : security realm

.Callback[] LoginService.getServerLoginCallbacks(security-session-id, login-module-index)
We leave it out to figure out how it is done. The important thing at this time is that you can pass this callback array to the (injected during callback-handler

 method call and supplied by the authentication client (see above)). populates server initialize() callback-handler.handle(Callbacks[])
callbacks array with client data.

Now method asks the to perform the actual login by passing it the security-session-id, login-module-ServerLoginProxy.login() JaasLoginService
configuration index, and an array of populated callbacks. As a result, is retrieved from the map, and corresponding login security-session active-logins
module (configured in the under login module index) is invoked to perform the login.security realm

A point to note here is that security realm login modules are initialized at the time when server-side callbacks are retrieved by the in ServerLoginProxy
preparation for login. (Not an obvious place to look). All information to the security realm login module comes from the security session (it is on the server-
side of course).

It looks like we are logged in, or at least close...

JaasLoginCoordinator.commit()

If overall authentication succeeds (according to the security realm policy), is called. JaasLoginService.commit() Login-module-proxy.commit()
is called for every proxy in the login module proxy array. It is here that all principals in the security realm login modules are collected (and possibly wrapped
into the and) and then added to the in the (server-side). At the end of the commit-loop, DomainPrincipal RealmPrincipal Subject security session

 between () and () are synchronized. Principals JaasLoginCoordinator Subject client-side security session Subject server-side Principals
from the are to the (in case of the server-side this is JaasLoginCoordinator Subjects added security session Subject JaasLoginCoordinator
an empty set) and serializable from the security session Subject are added to the .Principals JaasLoginCoordinator Subject

At the very end method notifies the of login success: JaasLoginCoordinator.commit() JaasLoginService LoginService.loginSucceed
. As a result, registers it's session Subject with the and generates a (security-session-id) JaasLoginService ContextManager subject-id

based on the Subject. It then wraps this subject-id into the , adds it to the set of in the and returns IdentificationPrincipal Principals Subject I
 to the .dentificationPrincipal JaasLoginCoordinator

JaasLoginCoordinator adds into it's own Subject.IndentificationPrincipal

Authentication complete!!!

https://cwiki.apache.org/confluence/display/GMOxDOC10/Geronimo+and+JAAS
https://cwiki.apache.org/confluence/display/GMOxDOC10/Geronimo+and+JAAS

	Login into Geronimo

