
JBoss to Geronimo - EJB-CMP Migration

An entity bean is defined as a representation of persistent data that has the ability to read from database and populate its fields with data. It can be
updated and stored back to the database. There are two types of entity beans: Bean-Managed Persistence(BMP) and Container-Managed Persistent
(CMP). This article covers an example of a CMP, more specifically, a CMP application migration. For this type of entity bean, actual code must be written
to handle persistent operations such as loading, saving and finding data. The developer must use persistence API such as JDBC to select, insert, update,
delete from a database.

This article is organized in the following sections:

CMP implementation analysis
Sample application
The JBoss environment
The Geronimo environment
Step-by-step migration
Summary

CMP implementation analysis
CMP implementation may vary from one vendor to another. The purpose of this section is to provide a CMP specific feature-to-feature comparison
between JBoss v4 and Apache Geronimo so you can clearly identify the differences and plan accordingly before migration.

Feature JBoss v4 Apache Geronimo

EJB Container JBoss AS 4.0 comes with its own EJB Container implementation. Geronimo uses OpenEJB as its EJB Container.

Back to Top

Sample application
The application is very simple. When the command line client is run, an entry is made into the database. The findByPrimaryKey() Loan CMP Sample
method of the CustomerHomeRemote interface is called and the field values of the returned CustomerRemote object are printed to the console. This is
followed by a call to the findBySssNo() method after which the field values of the returned CustomerRemote object are printed to the console.

The following figure illustrates the application flow:

The user runs the command line client which then either creates an entity bean (which then adds itself to the datasource) or asks for one, by primary key,
which is created from information that is stored in the database.

Back to Top

Application Beans

The Loan CMP application consists of the following packages:

com.ibm.demo.entity.client
CMPClient

contains the main class that is called from the console.
com.ibm.demo.entity.bmp

CustomerBean
implements javax.ejb.EntityBean
fields of the bean are defined here
contains business methods corresponding to the methods exposed by the CustomerRemote interface.
Conatins callback methods that are called by the container to manage the bean. These methods include the create and find
methods which use jdbc to make entries to the database and to search the database.
Has a helper method that looks up the datasource through jndi.

CustomerRemote

https://cwiki.apache.org/confluence/download/attachments/5067/cmp.zip?version=5&modificationDate=1137548215000&api=v2

1.

2.

3.
4.

5.

interface that extends javax.ejb.EJBObject
exposes the setter and getter methods of the EJB

CustomerHomeRemote
interface that extends javax.ejb.EJBHome
exposes the create and find methods of the EJB

Back to Top

Tools used

The tools used for developing and building the Loan CMP sampple application are:

Eclipse

The Eclipse IDE was used for development of the sample application. This is a very powerful and popular open source development tool. Integration plug-
ins are available for both JBoss and Geronimo. Eclipse can be downloaded from the following URL:

http://www.eclipse.org

Apache Maven

Maven is a software project management and comprehension tool. Based on the concept of a project object model (). Maven can manage a project's POM
build, reporting and documentation from a central piece of information.

For this migration example Maven 1.0.2 was used. Maven can be downloaded from the followinf URL:

http://maven.apache.org

Back to Top

Sample database

The sample database for the Loan CMP application has only one table. This is an in-memory table. The storage engine creates tables with MEMORY
contents that are stored in just in memory. These were formerly known as HEAP tables.

The following table describes the fields of the table.CUSTOMER

Field data type

id INTEGER

name VARCHAR(45)

birthdate DATE

sss_no VARCHAR(25)

address VARCHAR(60)

annual_salary DOUBLE

loan_amount DOUBLE

Back to Top

The JBoss environment
This section shows you how and where the sample JBoss reference environment was installed so you can map this scenario to your own implementation.
Note that for this migration example JBoss v4.0.2 was used.

Detailed instructions for installing, configuring, and managing JBoss are provided in the product documentation. Check the product Web site for the most
updated documents.

The following list highlights the general tasks you will need to complete to install and configure the initial environment as the starting point for deploying the
sample application.

Download and install JBoss v4 as explained in the product documentation guides. From now on the installation directory will be referred as <jboss
_home>
Create a copy of the default JBoss v4 application server. Copy recursively to <jboss_home>\server\default <jboss_home>\server\<your_serve
r_name>
Start the new server by running the command from the directory.run.sh -c <your_server_name> <jboss_home>\bin
Once the server is started, you can verify that it is running by opening a Web browser and pointing it to this URL: . You should http://localhost:8080
see the JBoss Welcome window and be able to access the JBoss console.
Once the application server is up and running, the next step is to install and configure all the remaining prerequisite software required by the
sample application. This step is described in the following section.

http://www.eclipse.org
http://maven.apache.org/reference/glossary.html#POM
http://maven.apache.org
http://localhost:8080

Back to Top

Install and configure prerequisite software

In order to build and run the Loan CMP application included in this article, you need to install and configure the build tool and the database that is used by
the application.

Modify database settings

This application is using the HSQL database that comes as part of the JBoss bundle. You need to modify the script for creating the database. Edit the local
 file located in the following directory:DB.script

<jboss_home>\server\<your_server_name>\data\hypersonic

Add at the top of the file the content of the following example in order to create the sample HSQL database.localDB.script

CREATE MEMORY TABLE CUSTOMER(ID INTEGER NOT NULL PRIMARY KEY,NAME VARCHAR(45),BIRTHDATE DATE,SSS_NO VARCHAR(25),
ADDRESS VARCHAR(60),ANNUAL_SALARY DOUBLE,LOAN_AMOUNT DOUBLE)

Configure Maven

As mentioned before, Apache Maven is used to build the binaries for the Loan CMP application. If you do not have Maven installed this is a good time for
doing it.

Apache Maven can be downloaded from the following URL:

http://maven.apache.org

Back to Top

Build the sample application

In order to build the loan application a Maven script has been provided. Download the Loan application from the following link:

Loan CMP Sample

After extracting the zip file, a directory will be created. From now on, this directory will be referred as <cmp_home>. In that directory open the loan-cmp
project.properties file. Edit the maven.jboss.home property to match your environment. It is important that you use on the windows platform as is done "//"
below.

maven.jboss.home=Z://JBoss-4.0.2

From a command prompt or shell go to the <cmp_home> directory and run the following command:

maven

This will build a jar and a war file and put them in the <cmp_home>/target folder. The jar created by the Maven build contains a JBoss specific deployment
descriptor, the file in located the META-INF directory of the JAR is shown in the following example:jboss.xml

JBoss deployment descriptor - jboss.xml

<?xml version="1.0"?>

<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <jndi-name>CustomerHomeRemote</jndi-name>
 </entity>
 </enterprise-beans>
</jboss>

The jndi-name element is used to bind the CustomerEJB to the name CustomerHomeRemote in JNDI.

Make sure JBoss is not running at the time of modifying this file.

http://maven.apache.org
https://cwiki.apache.org/confluence/download/attachments/5067/cmp.zip?version=5&modificationDate=1137548215000&api=v2

Running will also build the a war file and put it in the <cmp_home>/target folder. The war created by the maven build contains a JBoss specific maven
Web application deployment descriptor, the jboss-web.xml file in the WEB-INF directory of the WAR is shown in the following example:

JBoss deployment descriptor - jboss.xml

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
 <ejb-ref>
 <ejb-ref-name>ejb/CustomerHome</ejb-ref-name>
 <jndi-name>CustomerHomeRemote</jndi-name>
 </ejb-ref>
</jboss-web>

Back to Top

Deploy the sample application

To deploy the Loan CMP application in JBoss, copy the and files you just built with Maven to the following directory:entity-ejb-cmp.jar entity-ejb.war

<jboss_home>\server\<your_server_name>\deploy

If JBoss is already started, it will automatically deploy and start the application; otherwise, the application will be deployed and started at the next startup.

Back to Top

Test the sample application

To test the sample client application type the following command from the <cmp_home> directory:

maven run:client

When you run this command, you will receive a list of all the loans that were retireved from the database, you should see a screen similar to the one
shown in the following example:

E:\loan-cmp>maven run:client
 __ __
| \/ |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \ ~ intelligent projects ~
|_| |___,_|_/___|_||_| v. 1.0.2

build:start:

run:client:
 [java] creating home...
 [java] creating customer...
 [java] INSERTING RECORD :1, Customer 1, 11/11/11, 2323232 , NO INFO, 0.0 , 0.0
 [java] DONE WITH THE INSERT
 [java] done.findByPrimaryKeyTest... 1
 [java] customer name: Customer 1
 [java] customer sss no: 2323232
 [java] customer loan amount: 0.0
 [java] customer annual salary: 0.0
 [java] customer birthdate: Fri Nov 11 00:00:00 EST 2011
 [java] updating ejb...
 [java] done.findBySssNoTest... 2323232
 [java] customer name: Customer 2
 [java] customer sss no: 2323232
 [java] customer loan amount: 0.0
 [java] customer annual salary: 0.0
 [java] customer birthdate: Fri Nov 11 00:00:00 EST 2011
BUILD SUCCESSFUL
Total time: 4 seconds
Finished at: Thu Nov 10 13:32:33 EST 2005

E:\loan-cmp>

To test the sample Web application point your browser to:

http://localhost:8080/entity-ejb

You should see the following screen:

Click on . Enter the new customer information then click , this will take you to the first page showing the updated list of customers.Add Customer Create

Back to Top

The Geronimo environment
Download and install Geronimo from the following URL:

http://geronimo.apache.org/downloads.html

The release notes available there provide clear instructions on system requirements and how to install and start Geronimo. Throughout the rest of this
article we will refer to the Geronimo installation directory as .<geronimo_home>

Back to Top

Configure resources

For this scenario the Loan CMP will use directly the SystemDatabase from Geronimo. In this case there is no need to set up a new connector for the
SystemDatabase since it is already configured as the DefaultDatasource.

Start the Geronimo server

Ensure that Geronimo is up and running. If the server has not been started yet, do so by typing the following command:

<geronimo_home>/bin/startup.sh

Once the server is started you should see a screen similar as the one illustrated in the following example:

When you are entering the make sure you spesify the date with the following format (MM/DD/YYYY)BIRTHDATE

TCP/IP ports conflict

If you are planning to run JBoss and Geronimo on the same machine consider to change the default service ports on, at least, one of these
servers.

http://localhost:8080/entity-ejb
http://geronimo.apache.org/downloads.html

E:\geronimo\bin>startup
Booting Geronimo Kernel (in Java 1.4.2_09)...
Starting Geronimo Application Server
[*************] 100% 32s Startup complete
 Listening on Ports:
 1099 0.0.0.0 RMI Naming
 1527 0.0.0.0 Derby Connector
 4201 0.0.0.0 ActiveIO Connector EJB
 4242 0.0.0.0 Remote Login Listener
 8019 0.0.0.0 Tomcat Connector AJP
 8080 0.0.0.0 Jetty Connector HTTP
 8090 0.0.0.0 Tomcat Connector HTTP
 8443 0.0.0.0 Jetty Connector HTTPS
 8453 0.0.0.0 Tomcat Connector HTTPS
 61616 0.0.0.0 ActiveMQ Message Broker Connector
 Started Application Modules:
 EAR: org/apache/geronimo/Console
 WAR: org/apache/geronimo/applications/Welcome
 Web Applications:
 http://hcunico:8080/
 http://hcunico:8080/console
 http://hcunico:8080/console-standard
Geronimo Application Server started

Configure database via Geronimo Console

Access the Geronimo Console by pointing your Web browser to the following URL:

http://localhost:8080/console

Enter the following as the username and as the password, click .system manager Login

Once logged in, on the bottom left corner from the left navigation panel click on . In the text area labeled enter the following DB Manager SQL Command/s
SQL statement and click ; this will create the table used by the Entity Bean.Run SQL

CREATE TABLE CUSTOMER(ID INTEGER NOT NULL PRIMARY KEY,NAME VARCHAR(45),BIRTHDATE DATE,SSS_NO VARCHAR(25),ADDRESS
VARCHAR(60),ANNUAL_SALARY DOUBLE,LOAN_AMOUNT DOUBLE)

http://localhost:8080/console

Back to Top

Configure Maven

You should set the maven.geronimo.home property in project.properties to point to your <geronimo_home> directory.

Back to Top

Step-by-step migration
The same EJB jar file that was created and deployed in JBoss may be deployed in Geronimo with no changes to its contents but you still need to edit the
jndi properties of sample application. Edit the file located in in the <cmp_home>/jndi directory as shown in the following example:jndi.properties

jndi.properties

##
JBoss Settings
##
#java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
#java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
#java.naming.provider.url=localhost

##
Geronimo Settings
##
java.naming.factory.initial=org.openejb.client.RemoteInitialContextFactory
java.naming.provider.url=localhost:4201
java.naming.security.principal=username
java.naming.security.credentials=passwd

The following example shows the deployment plan used for deploying the EJB application, this deployment plan in located in the customer-ejb.xml
<cmp_home>/dd directory.

customer-ejb.xml

<?xml version="1.0" encoding="UTF-8"?>

<openejb-jar
 xmlns="http://www.openejb.org/xml/ns/openejb-jar"
 xmlns:naming="http://geronimo.apache.org/xml/ns/naming"
 xmlns:security="http://geronimo.apache.org/xml/ns/security"
 xmlns:sys="http://geronimo.apache.org/xml/ns/deployment"
 configId="CustomerEJB"
 parentId="geronimo/system-database/1.0/car">
<enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <jndi-name>CustomerHomeRemote</jndi-name>
 <local-jndi-name>CustomerRemote</local-jndi-name>
 <resource-ref>
 <ref-name>jdbc/ibm-demo</ref-name>
 <resource-link>SystemDatasource</resource-link>
 </resource-ref>
 </entity>
</enterprise-beans>
</openejb-jar>

This plan sets as the parent. What follows is the definition of the entity bean. The element indicates the geronimo/system-database/1.0/car jndi-name
jndi name of the entity bean's home interface . This is the name that the Loan CMP sample application will lookup in the jndi CustomerHomeRemote
context. The element indicates the jndi name of the local interface, which in this case happens to be a remote interface, local-jndi-name CustomerRemote
. Next, a reference to the is defined giving the application access to the database.SystemDatasource

The Web Application client can be direclty deployed in Geronimo. This is because the build step packages both the JBoss and Geronimo jboss-web.xml g
 specific deployment plans in the war file. You can see both of these files in the <cmp_home>\src\webapp\WEB-INF directory.eronimo-web.xml

The deployment plan should look like the following example.geronimo-web.xml

Geronimo deployment plan geronimo-web.xml

<web-app xmlns="http://geronimo.apache.org/xml/ns/web"
 xmlns:naming="http://geronimo.apache.org/xml/ns/naming"
 configId="EntityDemoWebApp"
 parentId="CustomerEJB">

 <context-root>entity-ejb</context-root>

 <ejb-ref>
 <ref-name>ejb/CustomerHome</ref-name>
 <target-name>geronimo.server:EJBModule=CustomerEJB,J2EEApplication=null,J2EEServer=geronimo,
j2eeType=EntityBean,name=CustomerEJB</target-name>
 </ejb-ref>

</web-app>

Build the Loan CMP application by typing from the <cmp_home> directory. This will create the and in the maven entity-ejb-cmp.jar entity-ejb.war
<cmp_home>/target directory.

Back to Top

Deploy the migrated application

To deploy the migrated Loan CMP application, make sure the Geronimo server is up and running.

From a command line, change directory to <geronimo_home> and type the following command:

java -jar bin/deployer.jar --user system --password manager deploy <cmp_home>/target/entity-ejb-cmp.jar <cmp_home>
/dd/customer-ejb.xml

With this command you first tell the deployer tool where is the module to deploy, then you tell the deployer tool how to deploy the application by specifying
the deployment plan.

Deploy the Web Application by typing the following command:

java -jar bin/deployer.jar --user system --password manager deploy <cmp_home>/target/entity-ejb.war

From the command line change the the <cmp_home> directory and type the following command:

maven run:client

You should see something similar to the following example:

E:\loan-cmp>maven run:client
 __ __
| \/ |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \ ~ intelligent projects ~
|_| |___,_|_/___|_||_| v. 1.0.2

build:start:

run:client:
 [java] creating home...
 [java] creating customer...
 [java] INSERTING RECORD :1, Customer 1, 11/11/11, 2323232 , NO INFO, 0.0 , 0.0
 [java] DONE WITH THE INSERT
 [java] done.findByPrimaryKeyTest... 1
 [java] customer name: Customer 1
 [java] customer sss no: 2323232
 [java] customer loan amount: 0.0
 [java] customer annual salary: 0.0
 [java] customer birthdate: 2011-11-11
 [java] updating ejb...
 [java] done.findBySssNoTest... 2323232
 [java] customer name: Customer 2
 [java] customer sss no: 2323232
 [java] customer loan amount: 0.0
 [java] customer annual salary: 0.0
 [java] customer birthdate: 2011-11-11
BUILD SUCCESSFUL
Total time: 4 seconds
Finished at: Mon Nov 14 10:57:15 EST 2005

Test the applications the same way you tested on JBoss.

Back to Top

Summary
This article has shown you how to migrate a sample application, from JBoss to the Apache Geronimo application server. You followed step-by-step
instructions to build the application, deploy and run it, and then migrate it to the Geronimo environment.
The following list summarizes the major differences found during this sample application migration.

In the Geronimo specific deployment descriptor the ejbreference name is mapped to the gbean name of the ejb unlike in the JBoss specific
deployment descriptor where the resource name is mapped to the JNDI name of the ejb.
In order to deploy a datasource in JBoss you need to just copy the configuration file to the deploy directory but in Geronimo you need to use the
deployer tool or the Web console.

Back to Top

	JBoss to Geronimo - EJB-CMP Migration

