
XPath

XPath

Camel supports to allow an or to be used in the or . For example you could use XPath to create an XPath Expression Predicate DSL Xml Configuration Pred
 in a or as an for a .icate Message Filter Expression Recipient List

Streams
If the message body is stream based, which means the input is received by Camel as a stream, then you will only be able to read the content of the stream

. Oftentimes when using as or the data will be accessed multiple times. Therefore use once XPath Message Filter Content Based Router Stream caching
or convert the message body to a beforehand. This makes it safe to be re-read multiple times.String
from("queue:foo") .filter().xpath("//foo")) .to("queue:bar") from("queue:foo") .choice().xpath("//foo")).to("queue:bar") .otherwise().to("queue:others");

Namespaces

You can easily use namespaces with XPath expressions using the Namespaces helper class.{snippet:id=example|lang=java|url=camel/trunk/camel-core
/src/test/java/org/apache/camel/processor/XPathWithNamespacesFilterTest.java}

Variables

Variables in XPath is defined in different namespaces. The default namespace is .http://camel.apache.org/schema/spring

Namespace URI Local part Type Description

http://camel.apache.org/xml/in/ in Message The message.exchange.in

http://camel.apache.org/xml/out/ out Message The message.exchange.out

http://camel.apache.org/xml/function/ functions Object Camel 2.5: Additional functions.

http://camel.apache.org/xml/variables/environment-variables env Object OS environment variables.

http://camel.apache.org/xml/variables/system-properties system Object Java System properties.

http://camel.apache.org/xml/variables/exchange-property Object The exchange property.

Camel will resolve variables according to either:

namespace given
no namespace given

Namespace Given

If the namespace is given then Camel is instructed exactly what to return. However when resolving either or Camel will try to resolve a header with IN OUT
the given local part first, and return it. If the local part has the value then the body is returned instead.body

No Namespace Given

If there is no namespace given then Camel resolves only based on the local part. Camel will try to resolve a variable in the following steps:

From that has been set using the fluent builder.variables variable(name, value)
From if there is a header with the given key.message.in.header
From if there is a property with the given key.exchange.properties

Functions

Camel adds the following XPath functions that can be used to access the exchange:

Function Argument Type Description

in:body none Object Will return the message body.IN

in:header the header name Object Will return the message header.IN

out:body none Object Will return the message body.OUT

out:header the header name Object Will return the message header.OUT

function:properties key for property String Camel 2.5: To lookup a property using the component (property placeholders).Properties

function:simple simple expression Object Camel 2.5: To evaluate a expression.Simple

 and is not supported when the return type is a , such as when using with a EIP.Note: function:properties function:simple NodeSet Splitter

http://www.w3.org/TR/xpath
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Stream+caching
http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/
http://camel.apache.org/xml/out/
http://camel.apache.org/xml/function/
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property
https://cwiki.apache.org/confluence/display/CAMEL/Properties
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

Here's an example showing some of these functions in use.{snippet:id=ex|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/language
And the new functions introduced in Camel 2.5:/XPathFunctionTest.java} {snippet:id=ex|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache

/camel/builder/xml/XPathFunctionsTest.java}

Using XML Configuration

If you prefer to configure your routes in your XML file then you can use XPath expressions as followsSpring

xml<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd"> <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring" xmlns:
foo="http://example.com/person"> <route> <from uri="activemq:MyQueue"/> <filter> <xpath>/foo:person[@name='James']</xpath> <to uri="mqseries:
SomeOtherQueue"/> </filter> </route> </camelContext> </beans>

Notice how we can reuse the namespace prefixes, in this case, in the XPath expression for easier namespace based XPath expressions! See also foo
this about using your own namespaces with XPath.discussion on the mailinglist

Setting the Result Type

The expression will return a result type using native XML objects such as . But many times you want a result type to be a XPath org.w3c.dom.NodeList
. To do this you have to instruct the which result type to use.String XPath

In Java DSL:

javaxpath("/foo:person/@id", String.class)

In Spring DSL you use the attribute to provide a fully qualified classname:resultType

xml<xpath resultType="java.lang.String">/foo:person/@id</xpath>

In :@XPath
Available as of Camel 2.1

java@XPath(value = "concat('foo-',//order/name/)", resultType = String.class) String name)

Where we use the XPath function to prefix the order name with . In this case we have to specify that we want a as result type so the concat foo- String
 function works.concat

Using XPath on Headers

Available as of Camel 2.11

Some users may have XML stored in a header. To apply an XPath statement to a header's value you can do this by defining the attribute.headerName

In XML DSL:{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/xpath
And in Java DSL you specify the as the 2nd parameter as shown:/XPathHeaderNameTest.xml} headerName

javaxpath("/invoice/@orderType = 'premium'", "invoiceDetails")

Examples

Here is a simple using an XPath expression as a predicate in a example Message Filter{snippet:id=example|lang=java|url=camel/trunk/camel-core/src/test
If you have a standard set of namespaces you wish to work with and wish to share them across /java/org/apache/camel/processor/XPathFilterTest.java}

many different XPath expressions you can use the as shown NamespaceBuilder in this example{snippet:id=example|lang=java|url=camel/trunk/camel-
In this sample we have a construct. The first choice core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java} choice

evaulates if the message has a header key that has the value . The 2nd evaluates if the message body has a name tag type Camel choice <name>
which values is .Kong
If neither is true the message is routed in the otherwise block:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/builder

And the spring XML equivalent of the route:/xml/XPathHeaderTest.java} {snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test
/resources/org/apache/camel/spring/processor/SpringXPathHeaderTest-context.xml}

XPath Injection

You can use to invoke a method on a bean and use various languages such as XPath to extract a value from the message and bind it to Bean Integration
a method parameter.

The default XPath annotation has SOAP and XML namespaces available. If you want to use your own namespace URIs in an XPath expression you can
use your own copy of the to create whatever namespace prefixes you want to use.XPath annotation {snippet:id=example|lang=java|url=camel/trunk/camel-

e.g., cut and paste upper code to your own project in a different package and/or core/src/test/java/org/apache/camel/component/xslt/MyXPath.java}
annotation name then add whatever namespace prefix/URIs you want in scope when you use your annotation on a method parameter. Then when you use
your annotation on a method parameter all the namespaces you want will be available for use in your XPath expression.

Example:

https://cwiki.apache.org/confluence/display/CAMEL/Spring
http://camel.465427.n5.nabble.com/fail-filter-XPATH-camel-td476424.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html

javapublic class Foo { @MessageDriven(uri = "activemq:my.queue") public void doSomething(@MyXPath("/ns1:foo/ns2:bar/text()") String correlationID,
@Body String body) { // process the inbound message here } }

Using XPathBuilder Without an Exchange

Available as of Camel 2.3

You can now use the without the need for an . This comes handy if you want to use it as a org.apache.camel.builder.XPathBuilder Exchange
helper to do custom XPath evaluations. It requires that you pass in a since a lot of the moving parts inside the requires CamelContext XPathBuilder
access to the Camel and hence why is needed.Type Converter CamelContext

For example you can do something like this:

javaboolean matches = XPathBuilder.xpath("/foo/bar/@xyz").matches(context, "<foo><bar xyz='cheese'/></foo>"));

This will match the given predicate.

You can also evaluate for example as shown in the following three examples:

javaString name = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>cheese</bar></foo>", String.class); Integer number = XPathBuilder.xpath
("foo/bar").evaluate(context, "<foo><bar>123</bar></foo>", Integer.class); Boolean bool = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>true</bar></foo>", Boolean.class);

Evaluating with a String result is a common requirement and thus you can do it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder

Available as of Camel 2.3

You need to add as dependency to your project. It's now easier to use with the which can be done in several ways camel-saxon Saxon XPathBuilder
as shown below. Where as the latter ones are the easiest ones.

Using a factory Using the {snippet:id=e1|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java}
object model

The easy one{snippet:id=e2|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java} {snippet:
id=e3|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XPathTest.java}

Setting a Custom XPathFactory Using System Property

Available as of Camel 2.3

Camel now supports reading the that can be used to set a custom to use.JVM system property javax.xml.xpath.XPathFactory XPathFactory

This unit test shows how this can be done to use Saxon instead:{snippet:id=e4|lang=java|url=camel/trunk/components/camel-saxon/src/test/java/org
Camel will log at level if it uses a non default such as:/apache/camel/builder/saxon/XPathTest.java} INFO XPathFactory

XPathBuilder INFO Using system property javax.xml.xpath.XPathFactory:http://saxon.sf.net/jaxp/xpath/om with value: net.sf.saxon.xpath.
XPathFactoryImpl when creating XPathFactory

To use Apache Xerces you can configure the system property:

-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl

Enabling Saxon from Spring DSL

Available as of Camel 2.10

Similarly to Java DSL, to enable Saxon from Spring DSL you have three options:

Specifying the factory

xml<xpath factoryRef="saxonFactory" resultType="java.lang.String">current-dateTime()</xpath>

Specifying the object model

xml<xpath objectModel="http://saxon.sf.net/jaxp/xpath/om" resultType="java.lang.String">current-dateTime()</xpath>

Shortcut

xml<xpath saxon="true" resultType="java.lang.String">current-dateTime()</xpath>

Namespace Auditing to Aid Debugging

Available as of Camel 2.10

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://saxon.sourceforge.net/
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)

1.

2.

A large number of XPath-related issues that users frequently face are linked to the usage of namespaces. You may have some misalignment between the
namespaces present in your message and those that your XPath expression is aware of or referencing. XPath predicates or expressions that are unable to
locate the XML elements and attributes due to namespaces issues may simply look like "they are not working", when in reality all there is to it is a lack of
namespace definition.

Namespaces in XML are completely necessary, and while we would love to simplify their usage by implementing some magic or voodoo to wire
namespaces automatically, truth is that any action down this path would disagree with the standards and would greatly hinder interoperability.

Therefore, the utmost we can do is assist you in debugging such issues by adding two new features to the XPath Expression Language and are thus
accessible from both predicates and expressions.

Logging the Namespace Context of Your XPath Expression/Predicate

Every time a new XPath expression is created in the internal pool, Camel will log the namespace context of the expression under the org.apache.
 logger. Since Camel represents Namespace Contexts in a hierarchical fashion (parent-child relationships), the camel.builder.xml.XPathBuilder

entire tree is output in a recursive manner with the following format:

[me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}]]]

Any of these options can be used to activate this logging:

Enable logging on the logger, or some parent logger such as TRACE org.apache.camel.builder.xml.XPathBuilder org.apache.
 or the root logger.camel

Enable the option as indicated in , in which case the logging will occur on the level.logNamespaces Auditing Namespaces INFO

AuditingNamespaces

Auditing namespaces

Camel is able to discover and dump all namespaces present on every incoming message before evaluating an XPath expression, providing all the richness
of information you need to help you analyse and pinpoint possible namespace issues. To achieve this, it in turn internally uses another specially tailored
XPath expression to extract all namespace mappings that appear in the message, displaying the prefix and the full namespace URI(s) for each individual
mapping.

Some points to take into account:

The implicit XML namespace (xmlns:xml="http://www.w3.org/XML/1998/namespace") is suppressed from the output because it adds no value.
Default namespaces are listed under the keyword in the output.DEFAULT
Keep in mind that namespaces can be remapped under different scopes. Think of a top-level 'a' prefix which in inner elements can be assigned a
different namespace, or the default namespace changing in inner scopes. For each discovered prefix, all associated URIs are listed.

You can enable this option in Java DSL and Spring DSL.

Java DSL:

javaXPathBuilder.xpath("/foo:person/@id", String.class).logNamespaces()

Spring DSL:

xml<xpath logNamespaces="true" resultType="String">/foo:person/@id</xpath>

The result of the auditing will be appear at the level under the logger and will look like the INFO org.apache.camel.builder.xml.XPathBuilder
following:

2012-01-16 13:23:45,878 [stSaxonWithFlag] INFO XPathBuilder - Namespaces discovered in message: {xmlns:a=[http://apache.org/camel], DEFAULT=
[http://apache.org/default], xmlns:b=[http://apache.org/camelA, http://apache.org/camelB]}

Loading Script from External Resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as: , or .classpath: file: http:
This is done using the following syntax: , e.g., to refer to a file on the classpath you can do:resource:scheme:location

.setHeader("myHeader").xpath("resource:classpath:myxpath.txt", String.class)

Dependencies

The XPath language is part of camel-core.

	XPath

