WS-Addressing
WS-Addressing via XML Configuration/Java API

CXF provides support for the 2004-08 and 1.0 versions of WS-Addressing.

To enable WS-Addressing you may enable the WSAddressingFeature on your service. If you wish to use XML to configure this, you may use the following
syntax:

<j axws: endpoi nt id="{your.service. nanespace} Your Por t Nane" >
<j axws: f eat ur es>
<wsa: addressi ng xm ns: wsa="http://cxf.apache. or g/ ws/ addr essi ng"/ >
</jaxws: f eat ures>
</ j axws: endpoi nt >

You can also use the same exact syntax with a <jaxws:client>

<jaxws:client id="{your.service.namespace} Your Port Nanme">
<j axws: f eat ur es>
<wsa: addressi ng xm ns: wsa="http://cxf.apache. or g/ ws/ addr essi ng"/ >
</jaxws: features>
</jaxws:client>

From an API point of view this looks very similar:

i nport org. apache. cxf.jaxws. Endpoi nt | npl ;
i mport org. apache. cxf. ws. addr essi ng. WBAddr essi ngFeat ur e;

MyServi cel npl i npl ementor = new MyServicel npl ()

Endpoi nt1 npl ep = (Endpointlnpl) Endpoint.create(inplenentor);
ep. get Feat ures() . add(new WSAddr essi ngFeature());

ep. publish("http://some/ address");

You can also use it with the ClientProxyFactoryBeans and ServerFactoryBeans (and their JAX-WS versions, namely JaxWsProxyFactoryBean and
JaxWsServerFactoryBean):

i nport org. apache. cxf.frontend. si npl e. d i ent ProxyFact or yBean;
i mport org.apache. cxf.ws. addr essi ng. WBAddr essi ngFeat ur e;

Client ProxyFactoryBean factory = new dientProxyFactoryBean();
factory. set Servi ceC ass(M/Servi ce. cl ass);

factory. set Address("http://acme. cone/ sone-service");

factory. get Features().add(new WSAddr essi ngFeature());
M/Service client = (My/Service) factory.create();

Enabling WS-Addressing with WS-Policy

If you're using WS-Policy, CXF can automatically set up WS-Addressing for you if you use the <Addressing> policy expression.

Decoupled responses

By default, WS-Addressing uses anonymous Reply-To addresses. This means the request/response patterns are synchronous in nature and the response
is sent back via the normal reply channel. However, WS-Addressing allows for a decoupled endpoint to be used for receiving the response and CXF will
then correlate it with the appropriate request. There are a few ways for configuring the address on which CXF will listen for decoupled WS-Addressing

responses.

HTTP Conduit configuration

The HTTP Conduit's client configuration has an option for a DecoupledEndpoint address. If the conduit has this configured, all requests sent via that
conduit that have WS-Addressing enabled will have their responses sent to that endpoint:

https://cwiki.apache.org/confluence/display/CXF20DOC/WS-Policy

<htt p: conduit name="{http://apache. org/ hell o_world_soap_http}SoapPort. http-conduit">
<http:client Decoupl edEndpoi nt="http://I ocal host: 9090/ decoupl ed_endpoi nt"/ >
</ http:conduit>

Request Property

The address can be set via a Request Context property.

((Bi ndi ngProvi der) proxy) . get Request Cont ext ()
. put ("org. apache. cxf.ws. addressi ng.repl yto", "http://1ocal host: 9090/ decoupl ed_endpoi nt");

AddressingProperties

The CXF org.apache.cxf.ws.addressing.impl.AddressingPropertiesimpl object can be used to control many aspects of WS-Addressing including the Reply-
To:

Addr essi ngProperties maps = new Addressi ngPropertieslnpl ();
Endpoi nt Ref erenceType ref = new Endpoi nt Ref erenceType();
AttributedUR Type add = new AttributedURl Type();

add. set Val ue("http://1ocal host: 9090/ decoupl ed_endpoi nt");
ref.set Address(add);

maps. set Repl yTo(ref);

maps. set Faul t To(ref);

((Bi ndi ngProvi der) port). get Request Cont ext ()
. put ("javax. xm . ws. addr essi ng. context", maps);

1 This method can also be used to configure the namespace/version of the WS-Addressing headers, exact message ID's, etc...

	WS-Addressing

