Window Operator Design

This page summarize the design of the stateful window operator, related to SAMZA-552. This operator is primarily used for stream-stream join, in which
streams are windowed (we do not support infinite window in Samza).

Class APIs

As described in this document, there are two classes extending the WindowOperator interface: AggregatedWindowOperator and
FullStateWindowOperator. The difference between these two operators is that for AggregatedWindowOperator you cannot access to its windowed
messages, whereas for FullStateWindowOperator you can. This feature of FullStateWindowOperator is necessary for operations such as joins, etc.

The classes are define as the following:

cl ass Operat or Spec {
Li st <StreanNane> i nput Streans;

Li st <StreanNane> out put Streans;

}
cl ass W ndowQper at or Spec ext ends Oper at or Spec {
enum Si zeUnit { TIME_SEC, TIME_MS, TUPLE .. }
enum Type { FI XED_WND, SESSION_WAD .. }
int w ndowSi ze;
int stepSize;
Si zeUnit sizeUnit;
Type type;
Retenti onPolicy retention;
MessageSt or ageSpec nsgSt or ageSpec;
}

interface Operator {
/1 Initialize the operator
void init();

/] Process a new input tuple for the operator
voi d process(Tupl e, MessageCollector, TaskCoordinator);

}

interface SinpleQperator extends Operator {
/1 Get the operator specs
Oper at or Spec get Spec();

}

interface ConpositeQperator extends Operator {
/1 Add a new operator into this conposite operator

voi d addOper at or (Si npl eOper at or)
}

cl ass W ndowQper at or (W ndowOper at or Spec) extends Si npl eOperator {

/!l Refresh the result when the w ndow timer expires

https://issues.apache.org/jira/browse/SAMZA-552
https://issues.apache.org/jira/secure/attachment/12708934/DESIGN-SAMZA-552-7.pdf

voi d refresh(Long, MessageCol | ector,

TaskCoor di nator) ;

/* The followi ng functions can be extended by users */

/1 Called before processing the input tuple

Tupl e beforeProcess(Tupl e,

MessageCol | ector, TaskCoordinator) {}

/1l Called before the result tuple is sent to the next task or operator
Tupl e beforeSend(Tupl e, MessageColl ector,

}

TaskCoor di nator) {}

cl ass Aggr egat edW ndowOper at or ext ends W ndowOper at or {

@verride

protected void refresh(Long,

MessageCol | ect or, TaskCoordi nator) {

/1 For all output pending wi ndows, check if

1. it has schedul ed output according to early em ssion policy

2. its size has reached (time or tuple) according to size policy
3. it has late arrived tuple according to late arrival policy

/1 then update its output stream according to the aggregate function;

/1
/1
Il

/'l For generated output stream call

this. beforeSend() then call collector.send()

MessageCol | ect or, TaskCoordi nator) {

Add an incom ng nessage to all w ndows that includes it
For those wi ndows with new message add to output pendi ng wi ndows

}
@verride
protected void process(Tuple,
/1 1. Call this.beforeProcess()
Il 2.
/1 3.
/1 4. Call this.refresh()

}
}

cl ass Full St at eW ndowOper at or ext ends W ndowOper at or {

@verride

protected void refresh(Long,

MessageCol | ect or, TaskCoordi nator) {

/1 For all output pending wi ndows, check if

1. it has schedul ed output according to early em ssion policy

2. its size has reached (time or tuple) according to size policy
3. it has late arrived tuple according to late arrival policy

/1 then update its output streamby just keeping its unflushed nessages;

/1
/1
/1

/| For generated output streamw th unflushed nessages, call this.beforeSend() then call

}

@verride

protected void process(Tuple,
1.

/1
/1
/1
/1

PN

Il Get
public

Il Get
public

Cal | this.beforeProcess()

MessageCol | ect or, TaskCoordinator) {

Add an incom ng nessage to all w ndows that includes it
For those wi ndows with new nmessage add to output pendi ng wi ndows

Call this.refresh()

nessages based on the range and the filter fields

Li st <Tupl e> get Messages(Range<T>,

nmessages based on the range only
Li st <Tupl e> get Messages(Range<T>) ;

Case Studies

Here are a list of example window operations and how they can be implemented.

Li st<String>);

col | ector. send()

Windowed Aggregation

The following aggregation on stream Orders:
SELECT STREAM product, AVE price) AS avg_price
FROM Or ders

OVER (ORDER BY time RANGE ' 10' nin PRECEDI NG

Can be implemented as follows:

Aver agePri ceTask extends Streanifask with Initabl eTask {

void init() {
/| operator spec should include the aggregation function
W ndowOper at or order Wndows = new Aggr egat edW ndowOper at or (Oper at or Spec) ;
order Wndows. init();

}

voi d process(Tuple tuple) {
/1 if there are any new results generated, they will
/1 be sent to output stream automatically
or der W ndows. process(tuple);

}
}

Stream-Stream Join

First note that unbounded stream-stream joins are not supported, i.e. join predicates must include timestamps from both streams. For example, the
following stream-stream join will be rejected at parsing time.

SELECT STREAM o.tine as time, o.id as id, a.value, s.cost
FROM Orders as o
JA N Shi pnments as s

N o.id = s.id

The following join on stream Orders and Shipments aligns timestamp boundary from the two streams:
SELECT STREAM o.tine as time, o.id as id, a.value, s.cost
FROM Orders as o
JA N Shi pnments as s
ONo.id =s.id

AND s.tine > o.time AND s.tine < o.time + 5 MN

To support this, Samza first will have a StreamStreamJoinOperator implementation:

St reantt reamJoi nQper at or extends Si npl eCperator {

@verride
voi d process(Tuple tuple) {
/1 1. Find join streams other than tuple.getStreanNane from spec.input Streans
/1 2. For each of these other streans, find the join set via w nOp.get Messages(range(0, 5), field(id,
EQUALS))
/1 3. For the given join set, call this.join()

}

Qut put Stream j oi n(Li st <St reanNane, Li st <Tuple>>) {
// join the tuples frominput streans, put the result into output streamand return.
}
}

Then user's code would look like sth. like:

O der Shi pment sJoi nTask extends Streanifask with InitableTask {
void init() {

/1 Note that we should connect these three operators via specs. |.e.:
/1 Or der Spec. out put Streans = {"order"}
/1 Shi pnent Sepc. out put Streanms = {"shi pment"}
/1 Joi nSpec. i nput Streanms = {"order", "shipnent"}
W ndowQOper at or order Wndows = new Ful | St at eW ndowOper at or (Or der Spec) ;
W ndowOper at or shi pment Wndows = new Ful | St at eW ndowQper at or (Shi prment Spec) ;
St reanSt r eamJoi nOper at or 0sJoi n = new St reanttreamloi nOper at or (Joi nSpec) ;
Conposi teCperator join = new ConpositeQperator();

order Wndows. i nit();
shi pment Wndows. init();
osJoin.init();
j oi n. addOper at or (or der W ndows) ;
j oi n. addQper at or (shi pment W ndows) ;
j oi n. addQper at or (0sJoi n);
join.init();
}
voi d process(Tuple tuple) {
/1 if there are any new results generated, they will

/] be sent to output stream automatically
or der W ndows. process(tuple);

}
}

Discussion

Here are some more notes regarding the above APIs:

1. We can put the beforeSend / beforeProcess into a Callback class to get better code re-usage.

	Window Operator Design

