
Architecture

Overview

Trafodion provides an operational SQL engine on top of Hadoop, a solution targeted toward operational workloads in the Hadoop Big Data environment. 
Included are:

Fully functional ANSI SQL language support
Full ACID support for read/write queries including distributed transaction protection for multiple rows, tables and statements
Heterogeneous storage engine access including native access to data stores
Enhanced High Availability support for client applications
Support for large data sets using optimized intra-query parallelism
Performance improvements for OLTP workloads via compile and runtime optimizations

Transaction management features include:

Transaction serializability using the HBase-Trx implementation of Multi-Version Concurrency Control
Transaction recovery to achieve database consistency
Thread-aware transaction management support to work with multi-threaded SQL clients
Non-transactional/direct access to HBase tables

Process Architecture

The diagram above sketches the Trafodion process architecture. Traversing it top-down:

Obsolete

This page is obsolete. It has been replaced with: http://trafodion.apache.org/architecture-overview.html

Redirection Notice

This page will redirect to .http://trafodion.apache.org/architecture-overview.html
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Client applications talk to Trafodion via a JDBC or ODBC interface. A Trafodion driver implements these interfaces, using an optimized 
Trafodion-specific wire protocol to talk to the Master Executor process in the SQL layer. The diagram shows a JDBC Type 4 driver 
configuration.

The Master Executor process is the root process for executing SQL statements submitted via JDBC or ODBC. It contains a copy of the SQL 
compiler code. Most SQL statements are compiled within this process. The root of any compiled query plan is also executed in the Master 
Executor.

A few SQL statements (e.g., DDL and some utilities) require a second instance of the compiler code; this is the CMP process in the diagram.

Trafodion supports several forms of execution-time parallelism. When a query plan requires parallelism, a set of ESP (Executor Server 
Processes) is dynamically spawned (if not already available). Each ESP executes a fragment of the query plan.

The DTM process manages distributed transactions. This includes log management and transaction coordination.

The Storage Engine layer consists of HBase and Hadoop processes. Trafodion allows SQL access to native HBase tables. Trafodion reads 
HBase metadata in order to process these tables. Trafodion also offers its own implementation of SQL table, stored as an HBase table, for 
applications that need a more efficient OLTP representation. Trafodion generates its own metadata for such tables, and stores that in HBase.

Connectivity Subsystem

The Database Connectivity Services (DCS) framework enables applications developed for ODBC/JDBC APIs to access a Trafodion SQL database server. 
DCS is a distributed service. It uses the underlying HBase   instance for its definition of a cluster. ZooKeeper (an Apache open source project) is ZooKeeper
a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. All participating 
nodes and clients need to be able to access the running ZooKeeper.

DCS is a collection of components:

ODBC/JDBC Drivers: These provide a standard programming language middleware API for accessing database management systems 
(DBMS).
DCS Master Process: The DCS Master server is responsible for monitoring all server instances in the cluster. It assigns an ODBC/JDBC client 
connection request to an MXOSRVR process (shown as "Master Executor" in the diagram). It also has a backup process that takes over the 
Master Executor role during failures.
DCS Server Process: This process is responsible for starting and keeping an MXOSRVR server process (shown as "Master Executor" in the 
diagram) executing. There is one DCS Server process per node in the cluster.
MXOSRVR Server Process (shown as "Master Executor" in the diagram): This is the database server that provides database access to ODBC
/JDBC clients. There is a one-to-one relationship between an ODBC/JDBC client connection and a database server process. The MXOSRVR 
server performs all SQL queries on behalf of its client's requests. It will perform all required SQL calls to execute a SQL query through the 
Executor to access HBase tables.

Transaction Subsystem

Trafodion supports distributed ACID transaction semantics using the Multiversion Concurrency Control (MVCC) model. The transaction management is 
built on top of a fork of the   project. We’ve done four things to this code:HBase-trx

Upgraded it to work on HBase version 0.98.1 (for CDH 5.1) or 0.98.0 (for HDP 2.1) (it last worked on 0.94.6 for Trafodion 0.8. ).n
Added support for parallel worker processes doing work on behalf of the same transaction.
Added support for global transactions, that is, transactions that can encompass resources (regions/HTables) across an HBase cluster.
Added transaction recovery after server failure.

To achieve this, we add a Transaction Manager process (shown as “DTM” in the diagram) to each node. This process owns and keeps track of all 
transactions that were started on that node. (In HBase-trx, transactions were tracked in the library code of each client, which meant that after a server 
failure, there was no way to restart the transaction manager for in-doubt transactions.)

When a Trafodion client begins a SQL statement, it checks in with the Transaction Manager (TM) to begin the transaction. The TM returns a cluster-unique 
transaction ID. This transaction ID in turn is propagated by the Trafodion Executor to any processes that work on some fragment of that SQL statement. 
This transaction ID propagation occurs courtesy of a Trafodion messaging layer, which keeps track, for example, of whether a process death has occurred.

When a Trafodion Executor process issues an HBase call, the modified client-side HBase-trx library can deduce which TM owns the transaction from the 
transaction ID, and registers itself with that TM if it has not already done so. Thus, at any given moment in time, a TM is aware of what processes are 
participating in a transaction.

The original HBase-trx library worked by extending certain Java classes in the region server. Our implementation has for the most part changed to execute 
this library in co-processors. This allows better extensibility at the HBase level. With a class extension approach, only one feature could extend the HBase 
code. With co-processors, it is possible to host several extensions. Endpoint and observer co-processors perform the resource manager role in transaction 
processing.

For additional details, see the   slides.Trafodion Distributed Transaction Management

Compiler Architecture

The Trafodion Compiler translates SQL statements into query plans that can then be executed by the Trafodion execution engine, commonly called the 
Executor.

http://zookeeper.apache.org/
https://github.com/hbase-trx
https://cwiki.apache.org/confluence/download/attachments/61316702/Trafodion_DTM.pdf?version=1&modificationDate=1441486729000&api=v2


1.  

2.  

3.  

The Compiler is a multi-pass compiler. Each pass transforms a representation of the SQL statement into a new or augmented representation which is input 
to the next pass. The sections below give more detail on each pass. The logic that calls each pass is in the CmpMain class, method CmpMain::compile. 
You can find that logic in file $MY_SQROOT/sql/sqlcomp/CmpMain.cpp.

A copy of the compiler code runs in the Master process. We do this to avoid inter-process message passing between the Compiler and Executor. At the 
moment the compiler code is not re-entrant, but it is a serially reusable resource within the Master. Some processing is recursive. For example, the 
execution logic for DDL statements is packaged with the compiler code. When we execute a DDL statement, the Executor spawns a separate Compiler 
process to execute that logic. For another example, the UPDATE STATISTICS utility dynamically generates SQL SELECT statements to obtain statistical 
data. Since we are not re-entrant, we spawn a separate Compiler process for this recursive processing.

The compiler is written in C++.

Parser

The parser pass performs lexical and syntactic analysis, transforming the SQL statement into a parse tree. We use a hand-coded scanner for lexical 
analysis of UCS2 strings. (We support the UTF-8 encoding for SQL statement text but translate it to UCS2 internally). The parser grammar is implemented 
as a set of   rules. The output of the parser is a tree of objects of class RelExpr, representing relational operators. Scalar expressions are represented Bison
by trees of ItemExpr objects, which are contained in the nodes of the RelExpr tree. This common model to represent a query is used throughout the 
compilation process.

Binder

The binder pass takes the parse tree and decorates it with metadata information. All references to SQL objects (tables, views, columns and so on) are 
bound to their respective metadata. The binder also performs type synthesis. At this stage, we would detect errors such as the wrong data type being 
passed to a function call, or that a column reference doesn't belong to any of the tables in scope.

The binder also manages a cache of query plans. If the binder detects that the new SQL statement is similar to one previously compiled, it simply reuses 
the earlier query plan (modifying parameters as needed), bypassing subsequent compiler passes. This can be significant as optimization is often the most 
expensive compilation phase.

Normalizer

The SQL language is rich in redundancy. Many concepts can be expressed in multiple ways. For example, sub-queries can be expressed as joins. The 
DISTINCT clause can be transformed into GROUP BY. The normalizer pass removes this redundancy, transforming the parse tree into a normalized 
representation in three steps.

Predicate pull-up: Predicates are pulled up the tree as high as is semantically possible. Then equivalence classes (Value Equivalence 
Groups or VEGs) are created for columns and values that are subject to equality predicates. References to such columns and values are 
then replaced with a reference to the equivalence class (VEG). Similarly equality predicates themselves are replaced with a predicate that 
simply points to the equivalence class. Predicate pull-up is how we achieve transitive closure.
Normalization: We push predicates back down again, performing some optimizations. For example, if we have the query, select * from t1 
join t2 on t1.a = t2.b where t1.a = 5, we can infer the predicate t2.b = 5 and push that down into the t2 scan operator.
Semantic query optimization: We perform unconditional transformations that depend on uniqueness or cardinality constraints.

Optimizer

The Trafodion optimizer is a rule-based, cost-driven optimizer based on the  . By "rule-based", we mean that plan transformation is Cascades Framework
based on a set of rules coded within the Optimizer. (We don't mean syntax-driven optimization based on hints in the SQL statement text.) By "cost-driven", 
we mean that cost estimates are used to bound the search space.

It is a top-down optimizer: It generates an initial feasible plan for the query, then using rules, transforms that plan into semantically equivalent alternatives. 
The optimizer computes the cost of each plan, and uses these costs to bound its search for additional plans using a branch-and-bound algorithm. This is in 
contrast to classical, dynamic programming-style optimizers, that build up a set of plans "bottom-up", by first considering all one-table plans, then joins of 
two tables, then joins of three tables and so on.

The optimizer itself is multiple passes, some of which can be bypassed depending on the optimization level chosen for the compile. The first pass simply 
generates the initial feasible plan. Subsequent passes apply successively richer sets of rules to traverse the search space. For example, we first consider 
only hash joins, and in later passes introduce the possibility of nested or merge joins.

The optimizer makes a distinction between logical and physical expressions. A logical expression considers the semantics of an operator, for example, a 
join. Certain aspects of a plan pertain to logical expressions, for example estimated output row count. A physical expression considers the implementation 
of an operator, for example, a nested join. Certain aspects of a plan pertain to physical expressions, for example estimated message counts. Rules 
transform logical expressions into other logical expressions or into physical expressions. So, for example, join order would be permuted at the logical 
expression level, then join method considered as we implement the operator with a physical expression.

Search spaces in general are exponential in size. So the optimizer is rich in heuristics to limit where it searches. The optimizer also takes into account 
variation: Estimations of cost for individual relational operators will be imperfect; the optimizer tries to pick plans that degrade gracefully if estimates are off 
the mark.

Another factor the optimizer takes into account is that traversal can wrap back to a previously visited plan. The optimizer remembers plans previously 
visited in a "memo" structure (class CascadesMemo). Plans are hashed for quick lookup.

Pre-Code Generator

http://www.gnu.org/software/bison/
ftp://ftp.research.microsoft.com/pub/debull/95SEP-CD.pdf


The pre-code generator performs unconditional transformations after the optimization phase. References to elements of an equivalence class are replaced 
with the most efficient alternatives. So, for example, an equivalence class (VEG) containing { T1.A, T2.B, 5 }, in the context of a T2 scan operator results in 
the predicate T2.B = 5.

Generator

The generator pass transforms the chosen optimized tree into a query plan which can then be executed by the Executor. Low-level optimizations of scalar 
expressions take place here. Many scalar expressions are generated in native machine code using the open source  . For those scalar LLVM infrastructure
operators where we have not yet implemented native expression support, we instead generate code that is interpreted at run time.

Heap Management

In order to make heap management efficient, the Compiler uses heap classes, NAHeap, that it shares with the executor. One heap, the Statement heap, is 
used for objects that are particular to a given SQL statement's compilation, for example, parse tree nodes. At the end of statement compilation, we simply 
destroy the heap instead of calling "delete" on each of possibly thousands of objects. Another heap, the Context heap, is used for objects that may be 
reused across SQL statements. For example, metadata is cached within the compiler. As one can imagine, considerable care goes into selecting which 
heap to use when creating a given object, to avoid dangling references and other resource leaks. For example, access to a given file must be 
encapsulated in an object on the global heap, since on the statement heap we cannot count on execution of the destructor to close the file.

Error Management

The Compiler captures error information into a ComDiagsArea object. The style of programming is to return on errors rather than throw exceptions. Calling 
logic then checks for the presence of errors before continuing. So, for example, the main logic that invokes each compiler pass checks for errors before 
proceeding to the next pass.

Executor Architecture

The Trafodion Executor implements a data-flow architecture. That is, each relational operator is implemented as a set of tasks which are scheduled for 
execution. Operators communicate with each other using queues.

Relational Operators

A query plan consists of a collection of fragments, each fragment being a portion of the query plan executed in a given process. Each fragment in turn is a 
tree of relational operators. A relational operator may in turn be decorated with additional scalar expressions. Relational operators in the query plan are 
represented by two class hierarchies, ex_tdb and ex_tcb. The ex_tdb (tdb = "task descriptor block") hierarchy contains the compiler-generated state for the 
operator. The ex_tcb (tcb = "task control block") hierarchy contains the run-time state for the operator. So, for example, the queue objects are pointed to by 
ex_tcb objects.

Scalar Expressions

Scalar expressions are evaluated by an expression evaluator. If the expression could be compiled into native machine code, the expression evaluator 
simply invokes this code. Otherwise, the expression evaluator implements an interpreter. For historical reasons, there are actually two interpreters. The 
first (and oldest) is a high level clause-based expression evaluator: each clause roughly corresponds to a scalar operator in the original SQL text. The 
second (and newest) is a PCODE-based evaluator, implementing a lower-level machine-like instruction set. Most expressions that cannot be generated as 
native machine code are generated as PCODE; those few expressions that PCODE cannot cover are generated as clause expressions. For debugging 
purposes, it is possible to force the Compiler to generate PCODE instead of native machine code, or clause-based expressions instead of either native 
machine code or PCODE.

Interprocess Communication

An IPC layer, shared with other components like the compiler, abstracts the (asynchronous) communication of objects across process boundaries. The 
sorts of things that flow are query plan objects, data rows, and error objects (ComDiagsArea).

Call Level Interface

At the highest level of the Executor is the Call Level Interface (CLI) layer. This layer implements an ODBC-like interface to the Executor. Connectivity code 
communicates to the Executor using this interface. The CLI layer keeps track of such abstractions as SQL statements and cursors. It also provides an 
interface to retrieve SQL diagnostics.

Heap Management

The Executor also uses the NAHeap classes for heap management. Again, there are statement heaps for objects local to a given SQL statement, and a 
global heap for objects that exist across statements.

Error Management

The Executor too uses the ComDiagsArea classes for error management. Like the Compiler, the programming style relies on returns rather than 
exceptions; calling code is expected to check for the existence of errors and respond appropriately.

http://llvm.org/


Statistics Reporting

The Executor also collects statistics concerning the execution of a particular query. These statistics are available at the CLI interface at the conclusion of 
statement execution.

Source Tree Tour

In this section, we give a high-level tour of the source code tree, relating it back to the architecture described above.

In the Trafodion core repository:

conn: connectivity subsystem
conn/jdbc: JDBC Type 4 client-side driver
conn/jdbc_type2: JDBC Type 2 client-side driver
conn/nci: trafci, a client-side command line interface to Trafodion
conn/odbc: ODBC
conn/odbc/src/odbc/*: (most other directories) ODBC server-side components
conn/odbc/src/odbc/odbcclient: ODBC Windows client-side driver
conn/unixodbc: ODBC Linux client-side driver

sqf: transaction subsystem and associated layers
sqf/src/seabed: messaging layer
sqf/src/seatrans: transaction subsystem
sqf/src/seatrans/hbase-trx: the HBase-trx portion of the transaction subsystem, with Trafodion modifications
sqf/src/seatrans/tm: the Trafodion layer on top of HBase-trx, including the TM

sql: SQL engine, including Compiler and Executor
sql/arkcmp: Compiler main process loop
sql/bin: contains main functions for various SQL engine processes, also message text file
sql/cli: CLI layer of the Executor
sql/comexe: classes used by both Compiler and Executor; includes tdb classes, some IPC classes
sql/common: more classes used by both Compiler and Executor; includes classes defining SQL data types and objects used for 
diagnostics
sql/executor: data flow portions of the Executor, including relational operators
sql/exp: scalar expression evaluator layer of the Executor
sql/export: more common modules used by Executor and Compiler (for example, ComDiagsArea)
sql/generator: Pre-code Generator and Generator passes of the Compiler
sql/optimizer: Binder, Normalizer and Optimizer passes of the Compiler
sql/parser: Parser pass of the Compiler
sql/regress: Regression test suite
sql/sort: sort module used by Executor
sql/sqlci: SQL conversational interface (a server-side command line interface to the SQL engine)
sql/sqlcomp: contains Compiler logic that drives compilation; calls the individual passes
sql/SqlCompilerDebugger: GUI debugger useful for Compiler development
sql/ustat: UPDATE STATISTICS utility module

An Example Enhancement

As a way to understand at least parts of the Trafodion design at a lower level, we've placed the notes from a possible example enhancement on the Exampl
 page.e Enhancement: Add a New Built-in Function

https://cwiki.apache.org/confluence/display/TRAFODION/Example+Enhancement%3A+Add+a+New+Built-in+Function
https://cwiki.apache.org/confluence/display/TRAFODION/Example+Enhancement%3A+Add+a+New+Built-in+Function
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