
Tuning the Search tier

If you are running a version of ElasticSearch that is different from what came with Apache Metron 0.4.2 and older, the below 
information is outdated.  As of , ElasticSearch and Kibana have been upgraded and the below guide may no longer METRON-939
be accurate.

Sizing your hardware
Elasticsearch prefers to run on a large number of small servers, as opposed to multiple instances on big servers.  See  for more details.this great post

If you are going to run multiple instance on a single server, be sure to provided dedicated disks to every instance.

Elasticsearch
On installation
1. Make sure to update your ES templates to properly index the fields of what you're sending in, especially if your logs have any custom fields.   Note that 
`bro_index.template` only currently handles DNS and HTTP   logs.  In the future I may be able to contribute back a template that handles all of the Bro
standard   logs, but I just haven't gotten a chance to push that out yet.  Bro
 - File(s): `incubator- / -deployment/roles/metron_elasticsearch_templates/files/es_templates/*.template`metron metron
2. (optional) Alter or disable the cron jobs to purge ES indices (and HDFS sensor data) every 30 days as necessary.
 - File(s): `incubator- / -deployment/roles/metron_streaming/tasks/{es_purge.yml,hdfs_purge.yml}`metron metron
3.  Assuming that ES will get behind from time to time, you may want to increase the indexing kafka topic size.  You should also consider increasing the 
partitioning kafka topics in general to distribute the load better and increase parallelism.
 - File(s): `incubator- / -deployment/roles/metron_kafka_topics/defaults/main.yml`metron metron
4.  Adjust the batch size of your indexes to line up with   of 5MB-15MB per batch.  Note that this is done via the indexing Elastic's recommendations
topology's indexingBolt, but it uses the enrichment topology's zookeeper config (batchSize).  See the below JIRA to split this out.  
 - File(s): `incubator- / -platform/ -enrichment/src/main/config/zookeeper/enrichments/*.json`metron metron metron
 - Relevant JIRA:   -470METRON

 

Post-installation but before data ingest
1.  (optional) Consider multiple ES nodes per physical server.  Lots of guides online about this, but tread carefully.  My default would be to not pursue this 
unless you have large(ish) machines running as dedicated search nodes.  As far as I'm aware,   has no built-in way to provision this, and there may Metron
be some downstream .
2.    `/etc/elasticsearch/elasticsearch.yml` - all configs below are optional and should be individually evaluated for your scenario.Tune
 - Set `indices.store.throttle.type: none` to prioritize indexing above searching.
 - Set `discovery.zen.fd.ping_timeout: 300s` to timeout after 300s instead of the default of 30s.  Busy clusters sometimes take time > 30s to respond.
 - Set `bootstrap.mlockall: true` to prevent Elasticsearch memory from being swapped.
 - Set `indices.fielddata.cache.size: 5%` to evict caches for infrequently used indexes more frequently.  You may want to play around with setting this 
number between 5% and 20%.
 - Set `indices.breaker.fielddata.limit: 50%` which prevents the size of fielddata from surpassing 50% of the heap - important to prevent large queries from 
knocking over a cluster.  Note that this   than your `indices.fielddata.cache.size` setting.must be higher
 - Set `indices.store.throttle.type: none` to prevent merges, which is helpful on systems bound by disk IO, as merge operations  .  You could can be a killer
also look at setting `indices.store.throttle.type: merge` and then configuring `indices.store.throttle.max_bytes_per_sec` to throttle the merge activity.
3.    the elasticsearch service parameters.Tune
 - Set your ES_HEAP_SIZE properly -   you want to make sure that this value is set to the highest value that uses compressed Oops, long story short with a 

.  This can be done by editing `/etc/init.d/elasticsearch`.  In the below example, you would want to set it to maximum of 1/2 your total system RAM
`32766` because it is <= .5 * 129013, and still uses compressed Oops.  
```
# free -m | grep Mem: | awk '{print $2}' 
129013
# java -Xmx32766m -XX:+PrintFlagsFinal 2> /dev/null | grep UseCompressedOops

bool UseCompressedOops := true {lp64_product}
# java -Xmx32767m -XX:+PrintFlagsFinal 2> /dev/null | grep UseCompressedOops
bool UseCompressedOops = false {lp64_product}

```
 - Other params to look into include `MAX_OPEN_FILES`, `MAX_LOCKED_MEMORY`, and `MAX_MAP_COUNT`, among others.
4.    your system ( ).Tune information from here
`/etc/sysctl.conf`
 - Set `vm.swappiness=1` to turn off swapping.
 - Set `net.core.somaxconn=65535` to increase the number of connections per port.
 - Set `vm.max_map_count=262144` to increase the number of memory map areas a process may have.
 - Set `fs.file-max=518144` to increase the number of file-handles that the Linux kernel will allocate.
`/etc/security/limits.conf`
 - Set `elasticsearch - nofile 65535` to increase the max number of open file descriptors, assuming the user for elasticsearch is "elasticsearch".
 - Set `elasticsearch - memlock  unlimited` to increase the max locked-in-memory address space, assuming the user for elasticsearch is                     
"elasticsearch".
`/etc/pam.d/system-auth`

https://github.com/apache/metron/commit/e821391895f0f3523b4e05ae5d639c13b0113855
https://www.elastic.co/blog/a-heap-of-trouble
https://www.elastic.co/guide/en/elasticsearch/guide/current/bulk.html#_how_big_is_too_big
https://issues.apache.org/jira/browse/METRON-470
https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html#circuit-breaker
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/index-modules-store.html#store-throttling
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
http://ziyasal.github.io/development/elasticsearch-configuration-tuning#implementation


 - Ensure `session required  ` exists to set limits on the system resources that can be obtained in a user-session.         pam_limits.so

 

Final notes
The tweaks above are meant to be persistent but not necessarily modify the current state of a system.  That said, I'd recommend a reboot then verify to 
make sure it is all configured correctly, as opposed to injecting the changes.  
If your ES ingest is slow, look upstream at   storm and kafka.  Probably not relevant to this thread, so leaving my notes for that out.  Happy to discuss tuning
further if it would be helpful to anyone else.  

SOLR
TODO - However, most of the Elasticsearch tuning applies because they both use Lucene underneath.

http://pam_limits.so

	Tuning the Search tier

