
1.

2.

3.

4.

5.

6.

How to configure your RocksDB state store
Samza provides build-in support for persistent state store, backed by RocksDB on the disk and changelog in Kafka. There are many possible usage
scenarios that users want to have various different features to be enabled. This guide attempts to give a general suggestion to various configuration of
RocksDB state store in different application scenarios.

Supported Persistent KeyValue Store Use Cases

changelog TTL Host-
affinity

Description

No No No Not recoverable local state stores, will lose all data when container restarted

Yes No No Recoverable local state stores, keeps old data, re-bootstrap when container restarts

No Yes No Not recoverable local state stores, expiring old data, will lose all data when container restarted

Yes Yes No Recoverable local state stores, expiring old data, re-bootstrap when container restarts ()see note for TTL

No No Yes (UNSUPPORTED) Not recoverable local state stores, re-use local state with best-effort when host-affinity succeeds, otherwise
losing all data

Yes No Yes Recoverable local state stores, keeps old data, quick-recovery when host-affinity succeeds

No Yes Yes (UNSUPPORTED) Not recoverable local state stores, expiring old data, re-use local state with best-effort when host-affinity
succeeds, otherwise losing all data

Yes Yes Yes Recoverable local state stores, expiring old data, quick-recovery when host-affinity succeeds ()see note for TTL

Note: host-affinity feature applies to all stores used in a Samza job, while changelog and TTL can be configured per store.

Using RocksDB TTL

RocksDB TTL is set for the local instance of RocksDB table on disk. When the records are expired from the table on local disk, they are not
immediately deleted from the changelog.
If changelog topics are not created apriori, Samza will create changelog topics w/ default configuration, which is to use cleanup logcompact
policy, not time-retention policy.
Records that are inserted into RocksDB are also written to changelog topics. Records that are expired via TTL are not deleted from the changelog
topics immediately.
If you manually configure your changelog topic to be time-retention based, records in the changelog will be deleted from Kafka changelog
according to the time-retention policy in changelog topic. If the time-retention in changelog topic is shorter than the TTL set for the local RocksDB,
you will run into the risk of losing data when the container restarts.
Setting the changelog topic to have a logcompact cleanup policy or a time-retention policy with TTL bigger than RocksDB TTL may lead to some
expired records re-appearing when the container restarts and re-seeds the state store from the changelog.
If there is a changelog topic configured for the store and it is using logcompact policy together with host-affinity, a record that was deleted for long
time may be revived: If the revived local RocksDB store is older than for the changelog topic, we may miss the deletion of the delete.retention.ms
old record in recovery and may revive some records that were deleted before .delete.retention.ms

Hence, it is recommended that if you use RocksDB TTL feature, do not design your application to be strictly rely on the TTL for correctness (i.e. a record
from the state store w/ expired timestamp can re-appear when container restarts). Use it only for opportunistic purging of old records by setting the
changelog cleanup policy to either logcompact or time-retention w/ bigger TTL than RocksDB TTL.

Tuning the Memory needed for RocksDB

Samza allows users to configure the memory size used by RocksDB , for cache and for write buffer: per store per container

stores.stor
.e-name

container.
cache.
size.bytes

10
48
57
600

The size of RocksDB's block cache in bytes, per container. If there are several task instances within one container, each is given a
proportional share of this cache. Note that this is an off-heap memory allocation, so the container's total memory use is the
maximum JVM heap size the size of this cache.plus

stores.stor
.e-name

container.
write.
buffer.size.
bytes

33
55
44
32

The amount of memory (in bytes) that RocksDB uses for buffering writes before they are written to disk, per container. If there are
several task instances within one container, each is given a proportional share of this buffer. This setting also determines the size of
RocksDB's segment files.

Since the above configuration is , you should calculate the total native memory used by your RocksDB stores using per store per container per container
the following formula:

http://kafka.apache.org/documentation/#compaction
http://delete.retention.ms/
http://delete.retention.ms/

1.
2.

numStores * (${stores.store-name.container.cache.size.bytes} + ${stores.store-name.container.write.buffer.size.
bytes})

Deleting the whole DB (A.K.A. resetting the state)

There are various cases when you might want to remove all data in RocksDB and restart (e.g. incompatible schema upgrade, restarting with a clean slate).
Currently, the recommended solution for that is to rename your RocksDB store.

Let's say the job is using a RocksDB store and now we want to reset the whole DB. You should:my_rocks_store

Reconfigure the job to use a new store name, e.g. my_rocks_store_v2.
Re-deploy your job to start using my_rocks_store_v2.

	How to configure your RocksDB state store

