
Container Managed Persistence with JPA
The Java Persistence API is a new programming model under EJB3.0 specification (JSR220) for the management of persistence and object/relational
mapping with Java EE and Java SE. With JPA, developers can easily develop java applications that perform operations on relational database
management systems using java objects and mapping. In that way, java applications developed using JPA are not only portable across different platforms,
but also applications can be easily developed using simple yet powerful programming model provided by JPA. This greatly improves application
maintainability against ever changing database world. JPA insulates applications from all the complexity and non-portable boilerplate code involved in
database connectivity and operations.

Apache geronimo uses for providing Java Persistence API to Java EE applications deployed in the server. Even though JPA is a part of EJB3.0 OpenJPA
spec, it is independent of it. Hence, JPA can be used in JavaSE, web and ejb applications in the same uniform way.

Below tutorial illustrates the use of container managed entity manager object. When @PersistenceContext annotation is used, container injects EntityMa
 object to the reference. The persistence context of the entity manager is propagated along with any transaction that is currently active. If the nager

transaction spans across components, all the entity manager object references that point to same persistence unit will have the same persistence context
through out the transaction. Thus, any changes made to the entities through any entity manager reference, are seen through other entity manager
references. The persistence scope of the container managed entity manager is by default. The is always . That Transaction transaction-type JTA
is, entity manager object is always registered with the transaction which is active when entity manager is invoked. In summary, the life cycle of the entity
manager and the associated persistence context is managed automatically by the container.

The tutorial creates an enterprise application that has an ejb module and a web module. The ejb module uses entity with as Account AccountNumber
primary key along with and attributes to create accounts in the database. The is created in the embedded OwnerName Balance AccountDB AccountDB
derby database. The in the ejb module has the methods to create the Account entities, deposit amount into an account, withdraw amount AccountBean
from an account and retrieve the available balance in a account. The wed module has a servlet that retrieves source account number, destination account
number and the amount from user, and performs transfer of the amount from source account to destination account.

The web module uses container injected object to check whether the source account has enough available balance to perform the EntityManager
transfer. If yes, it invokes ejb to withdraw the amount from the source account and deposits the same amount in the destination account. Finally, the
servlet uses the injected object to print the balances in the source and destination accounts. All the above mentioned operations are EntityManager
performed within a JTA transaction. So, persistence context of the entity manager is propagated across web and ejb modules. Hence, any changes made
to the entities in ejb module are seen in the web modules when the available balance values are printed.

In order to develop, deploy and run the application, the following environment is required.

Sun JDK 5.0+ (J2SE 1.5)
Eclipse 3.3.1.1 (Eclipse Classic package of Europa distribution), which is platform specific
Web Tools Platform (WTP) 2.0.1
Data Tools Platform (DTP) 1.5.1
Eclipse Modeling Framework (EMF) 2.3.1
Graphical Editing Framework (GEF) 3.3.1

The tutorial is divided into the following sections.

Setting the Eclipse environment
Creating ejb application with entities
Creating web application
Setting up the database tables and the Datasource.
Deploying the (ear) application
Running the application

The entire application can be downloaded from this .link

Setting the Eclipse environment

1. Download Apache Geronimo2.1 and install it on the server. Look into the geronimo documentation for
instructions.

2. Install the eclipse IDE and download geronimo eclipse plugin and install it on top of eclipse. Look into the
geronimo eclipse plugin documentation for instructions.

3. Create a runtime environment for Apache Geronimo2.1 in the eclipse. Look into the geronimo eclipse plugin
documentation for instructions to install a runtime for Apache Geronimo2.1.

Creating ejb application with entities

1. Open the eclipse tool and change the perspective to by clicking on Java EE
. It will open up wizard. Windows => Open Perspective => Other Open Perspective

Select from the list and click button.Java EE OK

http://openjpa.apache.org/
https://cwiki.apache.org/confluence/download/attachments/88124/ContainerManagedJPA-EAR.ear?version=1&modificationDate=1213308862000&api=v2

2. Right click on the and select .Package Explorer EJB Project

3. This will open up the wizard. Provide the values for , as given in the screen shot below. Click on New EJB Project Project Name Target Runtime Next
button.

4. Select the check boxes as given in the screen shot below and click on the button.Next

If target runtime is not setup, create a new target runtime pointing to geronimo installation directory. For more information, look at the geronimo
documentation that explains setting up eclipse plugin for geronimo and setting up runtime environment. This setup is required to resolve class
dependencies during compilation.

5. Select the checkboxes as given in the below screen shot and click on the button.Next

6. Provide the following values in textboxes and click on the button.Finish

7. Right click on the project and navigate to option. Provide the ContainerManagedJPA-EJB New => Class
following values in the wizard and click on button.New Java Class Finish

8. Copy the following contents into .Account.java

sample.jpa.Account.java

package sample.jpa;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.PostLoad;
import javax.persistence.PostUpdate;
import javax.persistence.PrePersist;
import javax.persistence.PreUpdate;
import javax.persistence.Table;

@Entity
@Table(name = "ACCOUNTCME")
public class Account implements Serializable {

 @Id

 public int accountNumber;
 public String ownerName;
 public double balance;

 public Account() {
 accountNumber = (int) System.nanoTime();
 }

 public String toString() {
 return "Acc.# " + accountNumber + ", owner" + ownerName
 + ", balance: " + balance
 + " $";
 }

 @PrePersist
 public void prepersist() {
 System.out.println("pre persist!!");
 }

 @PreUpdate
 public void preupdate() {
 System.out.println("pre update!!");
 }

 @PostUpdate
 public void postupdate() {
 System.out.println("post update!!");
 }

 @PostLoad
 public void postload() {
 System.out.println("post load!!");
 }

 public int getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(int accountNumber) {
 this.accountNumber = accountNumber;
 }

 public String getOwnerName() {
 return ownerName;
 }

 public void setOwnerName(String ownerName) {
 this.ownerName = ownerName;
 }

 public void setBalance(double balance) {
 this.balance = balance;
 }

 public double getBalance() {
 return balance;
 }
}

9. Similarly, create and copy the following contents.AccountInterface.java

sample.jpa.AccountInterface.java

package sample.jpa;

public interface AccountInterface {

 public Account open(int accountNumber) ;
 public double getBalance(int accountNumber);
 public void deposit(int accountNumber,double amount) ;
 public double withdraw(int accountNumber,double amount) ;
}

10. Similarly, create and copy the following contents.AccountBean.java.java

sample.jpa.AccountBean.java

package sample.jpa;

import javax.ejb.EJBException;
import javax.ejb.Remote;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;

@Stateless
@Remote(AccountInterface.class)
public class AccountBean implements AccountInterface {

 @PersistenceContext(type=PersistenceContextType.TRANSACTION)
 private EntityManager manager;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Account open(int accountNumber) {
 Account account = manager.find(Account.class, accountNumber);
 if(account == null){
 account = new Account();
 account.ownerName = "anonymous";
 account.accountNumber = accountNumber;
 manager.persist(account);
 return account;
 }else{
 throw new EJBException("Account already exists..!!. Account Number = "+accountNumber);
 }
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public double getBalance(int accountNumber) {
 Account account = manager.find(Account.class, accountNumber);
 if(account==null)
 throw new EJBException("Account not found..!!. Account Number = "+accountNumber);
 return account.balance;
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void deposit(int accountNumber, double amount) {
 Account account = manager.find(Account.class, accountNumber);
 if(account==null)
 throw new EJBException("Account not found..!!. Account Number = "+accountNumber);
 double new_balance = account.getBalance() + amount;
 account.setBalance(new_balance);
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public double withdraw(int accountNumber, double amount) {
 Account account = manager.find(Account.class, accountNumber);
 if(account==null)
 throw new EJBException("Account not found..!!. Account Number = "+accountNumber);
 if (amount > account.getBalance()) {
 return 0;
 }else {
 double new_balance = account.getBalance() - amount;
 account.setBalance(new_balance);
 return amount;
 }
 }
}

11. As outlined above, right click on the directory of project and META_INF ContainerManagedJPA-EJB
create . Copy the following contents into .persistence.xml persistence.xml

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="AccountUnit" transaction-type="JTA">
 <description>ContainerManagedJPA</description>
 <provider>org.apache.openjpa.persistence.PersistenceProviderImpl</provider>
 <jta-data-source>AccountDS</jta-data-source>
 <class>sample.jpa.Account</class>
 </persistence-unit>
</persistence>

12. Since we are going to use EJB annotations, the will not have any declarations. The contents of the META-INF/ejb-jar.xml META-INF/openejb-
 file should be as below. Otherwise, modify it accordingly.jar.xml

openejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<openejb-jar xmlns="http://openejb.apache.org/xml/ns/openejb-jar-2.2"
 xmlns:naming="http://geronimo.apache.org/xml/ns/naming-1.2"
 xmlns:sec="http://geronimo.apache.org/xml/ns/security-2.0"
 xmlns:sys="http://geronimo.apache.org/xml/ns/deployment-1.2">

 <sys:environment>
 <sys:moduleId>
 <sys:groupId>ContainerManagedJPA</sys:groupId>
 <sys:artifactId>EJB</sys:artifactId>
 <sys:version>1.0</sys:version>
 <sys:type>car</sys:type>
 </sys:moduleId>

 <dependencies>
 <dependency>
 <groupId>console.dbpool</groupId>
 <artifactId>AccountDS</artifactId>
 </dependency>
 </dependencies>

 </sys:environment>
 <enterprise-beans/>
 </openejb-jar>

13. Finally the project should like as below.ContainerManagedJPA-EJB

Creating web application

1. Right click on the and select . This will popup wizard. Project Explorer New => Project New Project
Select under option . Click on the button.Dynamic Web Project Web Next

2. Provide the values as given in the screen shot below on the wizard. Please note that checkbox is New Dynamic Web Project Add project to an EAR
check to add this web project to created during the creation of project.ContainerManagedJPA-EAR ContainerManagedJPA-EJB

3. In the next screen, select the values as given in the below figure and click on the button.Version Next

4. Check on the checkbox and click on the button. On the next screen, configure the deployment plan as follows. Generate Deployment Descriptor Next
After this, click on the button to complete creating web projectFinish

5. Right click on the folder of the web project and navigate to to create the index.html file as given in the screen shot. Click on WebContent New => HTML
the button and on the next screen click on the button. The content of the index.html is provided below the screen shot.Next Finish

index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Input Account Numbers and Amount</title>
</head>
<body>
<form name="input" action="/ContainerManagedJPA-WEB/Test"method="get">
<table border="0">
<tr>
<td align="right"> Debit Account Number</td>
<td align="left"><input type="text" name="account1"></td>
</tr>
<tr>
<td align="right"> Credit Account Number</td>
<td align="left"><input type="text" name="account2"></td>
</tr>
<tr>
<td align="right"> Amount to be Transfered </td>
<td align="left"><input type="text" name="amount"></td>
</tr>
<tr>
<td align="right"><input type="submit" value="Submit"></td>
<td></td>
</tr>
</table>
</form>
</body>
</html>

6. Right click on the web project and navigate to and click on it.New => Servlet

7. On the wizard, provide the values as given in the below screen shot and click on the button.Create Servlet Next

8. Select the defaults in the next screens and finally click on the button.Finish

9. Copy the below content into the servlet Test.java

Test.java

package sample.jpa;

import java.io.IOException;
import java.io.PrintWriter;

import javax.ejb.EJB;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.UserTransaction;

public class Test extends javax.servlet.http.HttpServlet
 implements javax.servlet.Servlet {

 static final long serialVersionUID = 1L;

 @PersistenceContext(unitName="AccountUnit")
 private EntityManager em;

 @EJB AccountInterface accountBean;

 public Test() {
 super();
 }

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException,
 IOException {

 PrintWriter out = response.getWriter();

 int accNo1 = Integer.parseInt(
 request.getParameter("account1"));
 int accNo2 = Integer.parseInt(
 request.getParameter("account2"));
 double amount = Double.parseDouble(
 request.getParameter("amount"));

 try{
 Context ctx = new InitialContext();
 UserTransaction ut = (UserTransaction)
 ctx.lookup("java:comp/UserTransaction");
 ut.begin();

 Account account = em.find(Account.class, accNo1);
 if(account.getBalance() < amount){
 throw new Exception("Account "+accNo1+
 " does not have enough balance "+amount+"");
 }else{
 outputText(out, "2", "green",
 "Message : Getting the balance amount available in Account Number "
 +accNo1+" in the Test Servlet");

 outputText(out, "5", "black","Account ="+
 accNo1+" : Current balance "+account.getBalance());
 out.println("
");

 outputText(out, "2", "green","Message : Withdrawing amount ("+
 amount+") using AccountBean from the Account Number "+accNo1);

 accountBean.withdraw(accNo1, amount);

 outputText(out, "2", "green",
 "Message : Getting the balance amount available in Account Number "+accNo1+
 " in the Test Servlet after withdrawing");

 double balance = account.getBalance();
 outputText(out, "5", "black","Account ="+accNo1+
 " : After withdrawing the balance is "+balance);
 out.println("
");

 outputText(out, "2", "green",
 "Message : Getting the balance amount available in Account Number "+
 accNo2+" in the Test Servlet");

 Account account2 = em.find(Account.class, accNo2);
 outputText(out, "5", "black","Account ="+
 accNo2+" : Current balance "+account2.getBalance());

 out.println("
");

 outputText(out, "2", "green",
 "Message : depositing amount ("+amount+
 ") using AccountBean to the Account Number "+accNo2);

 accountBean.deposit(accNo2, amount);
 outputText(out, "2", "green",
 "Message : Getting the balance amount available in Account Number "+
 accNo2+" in the Test Servlet after depositing");

 outputText(out, "5", "black","Account ="+
 accNo2+" : After depositing the balance is "+
 account2.getBalance());

 out.println("
");

 }
 ut.commit();
 }catch(Exception e){
 throw new ServletException(e);
 }
}

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 }

 private void outputText(PrintWriter out,
 String fontsize,
 String color,
 String text){
 out.println("<font size="+fontsize+" color="+
 color+">"+text+""+"
");
 }
}

10. Right click on the project and click on to open wizard. Click on ContainerManagedJPA-WEB Properties Properties for ContainerManagedJPA-WEB
the and tab. Click on the button and add project. Finally, click on the button on Java Build Path Projects Add ContainerManagedJPA-EJB OK Properties

 wizard. This is required because, projects looks up ejb in the for ContainerManagedJPA-WEB ContainerManagedJPA-WEB AccountInterface Conta
 project. To resolve the dependency during compilation, the EJB project has to be added to the build path of the WEB project.inerManagedJPA-EJB

Setting up the database tables and the Datasource

1. Start the geronimo server and open the admin console on a browser window with the url
.http://localhost:8080/console

2. Click on the on the portlet.Embedded DB => DB Manager Console Navigation

3. On the portlet on the right side, enter in the textbox and click on the Run SQL AccountDB Create DB
 button.Create

4. The above step will create database. On the same screen, enter the below SQL command on the textarea and select AccountDB SQL Command/s Acc
 in the combo box and click on the button. This will create table in the database.ountDB Use DB Run SQL ACCOUNTCME AccountDB

create table ACCOUNTCME (ACCOUNTNUMBER integer, OWNERNAME varchar(100), BALANCE decimal(15,2));

http://localhost:8080/console

5. Also insert two rows using the below SQL command.

insert into ACCOUNTCME values (1, 'Phani',2000);
insert into ACCOUNTCME values (2, 'Nag',2000);

After inserting the rows, table will look like the below screen shot.

6. We need to deploy datasource over AccountDB database for JPA. This datasource will be used by JPA to connect to database and perform DML
operations. Admin console can be used to deploy a datasource over AccountDB. Click on the in the services => Database Pools Console => Navigation
portlet. This will display the list of database pools currently running in the server.

7. Click on the link. This will open up the portlet as follows. Provide the value for Using the Geronimo database pool wizard Database pools Name of the
 as and select as below and click on the button.Database pool AccountDS Derby embedded Next

8. On the next screen, select the JAR file listed in the select box and provide as the value for Database Name and click on the Driver JAR AccountDB Depl
 button at the bottom. This will deploy the data source and display the list of datasources currently deployed on the server.oy

9. In the eclipse, open the and provide the dependency to the . Finally, the should be as below. This openejb-jar.xml AccountDS openejb-jar.xml
configuration is already done in the step-12 of aboveCreating ejb application with entities

Deploying the (ear) application

1. Deploy the EAR file as follows

C:\Geronimo-2.1\bin>deploy.bat --user system --password manager deploy c:\temp\ContainerManagedJPA-EAR.ear
Using GERONIMO_BASE: C:\Geronimo-2.1
Using GERONIMO_HOME: C:\Geronimo-2.1
Using GERONIMO_TMPDIR: var\temp
Using JRE_HOME: C:\SDK-May-31-2007\jre
 Deployed default/ContainerManagedJPA-EAR/1.0/car
 `-> ContainerManagedJPA-WEB.war @ /ContainerManagedJPA-WEB
 `-> ContainerManagedJPA-EJB.jar

22. Running the application

1. Open a browser window and hit the URL as http://localhost:8080/ContainerManagedJPA-WEB/
This page displays a html form with input fields for , and . Enter the values as Debit Account Number Credit Account Number Amount to be Transferred
given in the below screen shot and click on the button.Submit

http://localhost:8080/ContainerManagedJPA-WEB/

2. On the next page, several messages are displayed as below. From the messages, it can seen that the persistence context is propagated along with the
transaction and hence the changes made to Account balance in the ejb is observed in the servlet when is account.getBalance(accountNumber)
called.

3. The values of the balance fields in the table after the transaction are as follows.ACCOUNTCME

	Container Managed Persistence with JPA

