
Migrating from JAX-RPC to JAX-WS
{scrollbar}

This tutorial will take you through the steps that are most commonly involved in porting a Web Service from JAX-RPC to JAX-WS. This tutorial does not go
into details on why these changes are required and the concepts behind it, it is rather a quick note that helps you to deal with migrating your application
from the older web service stack to new stack.

Even though JAX-RPC is still supported in Java EE 5, it lacks many advanced features that JAX-WS has like , , , Annotations JAXB Binding SOAP 1.2 RE
 etc. So, it is strongly recommended that you use JAX-WS instead of JAX-RPC for implementing Web Services in Java.STful Services

2listpipe

JAXB Migration
The most notable change in JAX-WS 2.0 is the use of for data-binding between Java and XML. JAX-RPC 1.0 specified a limited mapping JAXB 2.0
between XML and Java.
This effectively eliminates the need of using JAX-RPC mapping file where we define the mapping between Java and WSDL. But also imposes a condition
that the return and request values can be able to bind to JAXB. Again, considering the wide variety of data types supported by JAXB it shouldn't be a
problem.

JAX-RPC & JAXB
JAX-RPC didn't used JAXB because the first version of JAX-RPC is completed much before JAXB. So, instead of waiting for JAXB to complete JAX-RPC
writers developed their own custom mapping.

Annotations
JAX-WS 2.0 relies heavily on the use of . These annotations are used to customize the mapping from JAVA to XML schema/WSDL and are Annotations
used at runtime to create the necessary files.
Geronimo uses the provided utility to create the WSDL and stubs on the fly at the deploy time by processing the annotations specified.Sun wsgen

SOAP Standards
JAX-RPC and JAX-WS both support SOAP 1.1. The default binding supported by JAX-WS is SOAP 1.1 over HTTP. But it can also support SOAP 1.2

. As a Java programmer you might not encounter any difference between SOAP 1.1 and SOAP 1.2binding over HTTP

Service Endpoint Interface Requirements
As per JAX-RPC a Service Endpoint Interface must extend Remote. JAX-WS removes this condition and you can pretty much make a class a Web POJO
Service by just adding the annotation at the top of the class.@WebService

JAX-RPC Converter SEIsolid package org.apache.geronimo.samples.jaxrpc; import java.math.BigDecimal; import java.rmi.Remote; import java.rmi.
RemoteException; public interface Converter extends Remote { public BigDecimal dollarToRupees(BigDecimal dollars) throws RemoteException; public
BigDecimal rupeesToEuro(BigDecimal rupees) throws RemoteException; } JAX-WS Converter SEIsolid package org.apache.geronimo.samples.jaxrpc;
import java.math.BigDecimal; import javax.jws.WebService @WebService(name = "Converter", targetNamespace = "http://org.apache.geronimo.samples.
jaxws") public interface Converter { public BigDecimal dollarToRupees(BigDecimal dollars); public BigDecimal rupeesToEuro(BigDecimal rupees); }

The main differences that you can find here are:

Annotations - JAX-WS requires that all SEIs include the @WebService annotation
java.rmi.Remote - The JAX-RPC SEI extends the java.rmi.Remote interface. JAX-WS no longer requires this.

Also, a JAX-WS SEI makes extensive use of annotations to specify the Java to WSDL mapping whereas this information does not exist in any form of JAX-
RPC SEI (which requires JAX-RPC mapping file to map Java to WSDL)

Deployment Descriptor
The deployment descriptor (web.xml) hasn't changed from JAX-RPC to JAX-WS where we just need to expose a POJO class as a servlet and the server
creates the artifacts on the fly whereas for JAX-RPC we need to specify the WSDL and JAX-RPC mapping file locations.
With JAX-WS mapping to Java EE 5 and taking the advantage of annotations, the need for Web Service descriptor document is webservices.xml
eliminated as a Web Service can be effectively described using the annotations

Client Port Lookup
The following code samples demonstrate the difference between JAX-RPC and JAX-WS in client port lookup.

JAX-RPC Converter Clientsolid package org.apache.geronimo.samples.jaxrpc; import java.net.URL; import javax.xml.namespace.QName; import javax.
xml.rpc.Service; import javax.xml.rpc.ServiceFactory; import javax.xml.rpc.ServiceException; //a part of client URL url = new URL("http://localhost:8080
/jaxrpc-converter/converter?wsdl"); QName qname = new QName("http://org.apache.geronimo.samples.jaxrpc/","ConverterService"); ServiceFactory
factory = ServiceFactory.newInstance(); Service service = factory.createService(url, qname); Converter conv = (Converter) service.getPort(Converter.
class); JAX-WS Converter Clientsolid package org.apache.geronimo.samples.jaxrpc; import java.net.URL; import javax.xml.namespace.QName; import
javax.xml.ws.Service; //a part of client URL url = new URL("http://localhost:8080/jaxrpc-converter/converter?wsdl"); QName qname = new QName
("http://org.apache.geronimo.samples.jaxrpc/","ConverterService"); Service service = Service.create(url, qname); Converter conv = (Converter) service.
getPort(Converter.class);

The main differences we can observe here are

The creation of instance is no longer required for creating the ServiceServiceFactory
Service maps to in JAX-RPC and to in JAX-WSjavax.xml.rpc.Service javax.xml.ws.Service

RESTful Services
JAX-WS introduced as successor for SOAP based Web Service. RESTful services already got quite support from many vendors RESTful Web Services
like , , etc.Google AdSense Yahoo API's Amazon
The important things that are introduced in JAX-WS to support RESTful services are:

Provider

Web service endpoints may choose to work at the XML message level by implementing the Provider interface. Here the endpoints access messages or
message payloads using this low level, generic API.

Dispatch

The Dispatch API is intended for advanced XML developers who prefer to use XML constructs at the java.lang.transform.Source or javax.xml.soap.
SOAPMessage level. For added convenience use of the Dispatch API with JAXB data-bound objects is supported.

Asynchronous Operations
A major difference in operation mapping for JAX-WS over JAX-RPC is the introduction of asynchronous operations. Any WSDL operation with a two-way
message flow, or one where the client expects to receive a response, can be mapped to an asynchronous Java representation.
For further reference about asynchronous operations in JAX-WS refer to the references section.

MTOM and SAAJ
JAXWS 2.0 brings in support for optimized transmission of binary data as specified by MTOM (SOAP Message Transmission Optimization Mechanism)
and SAAJ (SOAP with Attachments API for Java).
MTOM allows optimized transmission of binary data - any xs:base64Binary or xs:hexBinary schema type can be send as attachment following rules
defined by MTOM specification.

References
Developing a JAX-WS POJO Web Service & Developing JAX-RPC Web Services
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html
https://jax-rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html
http://blogs.sun.com/trajesh/entry/migrating_from_jax_rpc_to

https://cwiki.apache.org/confluence/display/GMOxDOC21/Developing+a+JAX-WS+POJO+Web+Service
https://cwiki.apache.org/confluence/display/GMOxDOC21/Developing+JAX-RPC+Web+Services
http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html
https://jax-rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html
http://blogs.sun.com/trajesh/entry/migrating_from_jax_rpc_to

	Migrating from JAX-RPC to JAX-WS

