
SAAJ Messaging Web Services
{scrollbar}

This article takes you through the some of basic concepts involved in . The goal of this tutorial is to give a brief overview about the SAAJ Messaging
terminology involved with SOAP (or SAAJ) messages.

We will also develop a basic SAAJ client that accesses a deployed web service by sending SOAP messages. By using SAAJ we will working at XML level
 which means that we need to create messages and parse the messages for results.of messages SOAP request SOAP response

To run this tutorial, as a minimum you will be required to have installed the following prerequisite software.

Sun JDK 5.0+ (J2SE 1.5)
Apache Geronimo 2.x
Eclipse IDE for Java EE Developers - Europa release
Geronimo Eclipse Plug-in 2.x

The steps that we follow in due course of the tutorial are:

2listpipe

What is SAAJ?
SAAJ stands for . SAAJ messages follow the SOAP standards, which prescribe the format for messages. With SOAP with Attachments API for Java SAA

 one can create XML messages that conform to SOAP 1.1 or 1.2 specification by simple making Java API calls.J API

SAAJ Messages and Connections

Messages

The two main types of SOAP messages are those that have attachments and those that do not.Messages sent using the SAAJ API are called request-
 messagesresponse

Outline of SOAP message
The following outline shows the very high-level structure of a SOAP message.

SOAP message
SOAP part

SOAP envelope
SOAP header (optional)
SOAP body

Attachment Part
MIME Headers
Content

Connections

All SOAP messages are sent and received over a connection. With the SAAJ API, the connection is represented by a object, which SOAPConnection
goes from the sender directly to its destination. They are sent over a SOAPConnection object with the method, which sends a message (a request) call
and then blocks until it receives the reply (a response).

Develpoing a SAAJ Client
Web Service Deployed
The SAAJ client that we are going to develop is targeted towards the web service that we deployed in the . Developing a JAX-WS POJO Web Service
Although this model will work any web service if we change the request message according to the of deployed service.WSDL file

Creating a Dynamic Web Project

Create a Dynamic Web Project
Select (or Ctrl+N) File->New->Project

In the popup window, select category (or type in Wizards' input field so it's left alone) and click Web->Dynamic Web Project dynamic Ne
 xt

https://cwiki.apache.org/confluence/display/GMOxDOC21/Developing+a+JAX-WS+POJO+Web+Service

Type as the and click twice. jaxws-saaj-converterclient Project Name Next

Modify the to and the to . Group Id org.apache.geronimo.samples.jaxws.saaj Artifact Id jaxws-saaj-converterclient

Click Finish

Adding code to send and receive SOAP messages

Right Click the , and Select jaxws-saaj-converterclient New->JSP

Name the jsp as and click index.jsp Finish

Add the following code to the index.jsp

index.jspsolid <%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%> <html> <head>
<title>Converter</title> <meta content="text/html; CHARSET=iso-8859-1" http-equiv="Content-Type"> </head> <body> <center> <h3>This from invokes a
Web Service.</h3>
 Please type an amount and click submit to see the result.
 <form action="index.jsp">Amount: <input type="text" name="
amount"> <input type="submit" value="Submit"></form>
 <jsp:include page="ConverterHandler"></jsp:include></center> </body> </html>

Right click again and add a named Servlet ConverterHandler

Add the following code to ConverterHandler.java

ConverterHandler.javasolid package abc; import java.io.IOException; import java.io.PrintWriter; import java.util.Iterator; import javax.servlet.
ServletException; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody; import javax.xml.soap.SOAPConnection; import javax.xml.soap.SOAPConnectionFactory; import javax.xml.soap.
SOAPElement; import javax.xml.soap.SOAPEnvelope; import javax.xml.soap.SOAPException; import javax.xml.soap.SOAPMessage; import javax.xml.
soap.SOAPPart; import org.w3c.dom.Node; public class ConverterHandler extends javax.servlet.http.HttpServlet implements javax.servlet.Servlet { static
final long serialVersionUID = 1L; public ConverterHandler() { super(); } protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException { String dollars = request.getParameter("amount"); if (dollars != null && dollars.trim().length() > 0) { String rupees =
null, euros = null; try { rupees = returnResult(createSOAPMessage("dollarToRupees", dollars)); euros = returnResult(createSOAPMessage
("rupeesToEuro", rupees)); } catch (SOAPException e) { // TODO Auto-generated catch block e.printStackTrace(); } PrintWriter out = response.getWriter();
out.println("

"); out.println(dollars + " Dollars equals to " + rupees + " Rupees"); out.println("
"); out.println(rupees + " Rupees equals to " +
euros + " Euros"); } } protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { doGet
(request, response); } public SOAPMessage createSOAPMessage(String operation, String arg) throws SOAPException { String urn = "http://jaxws.samples.
geronimo.apache.org"; MessageFactory messageFactory; SOAPMessage message = null; messageFactory = MessageFactory.newInstance(); message =
messageFactory.createMessage(); SOAPPart soapPart = message.getSOAPPart(); SOAPEnvelope envelope = soapPart.getEnvelope(); SOAPBody body
= envelope.getBody(); SOAPElement bodyElement = body.addChildElement(envelope.createName(operation, "ns1", "urn:" + urn)); bodyElement.
addChildElement("arg0").addTextNode(arg); message.saveChanges(); return message; } public String returnResult(SOAPMessage message) throws
SOAPException { String destination = "http://localhost:8080/jaxws-converter/converter"; SOAPConnectionFactory soapConnFactory =
SOAPConnectionFactory .newInstance(); SOAPConnection connection = soapConnFactory.createConnection(); SOAPMessage reply = connection.call
(message, destination); SOAPPart soapPart = reply.getSOAPPart(); SOAPEnvelope envelope = soapPart.getEnvelope(); SOAPBody body = envelope.
getBody(); Iterator iter = body.getChildElements(); Node resultOuter = ((Node) iter.next()).getFirstChild(); Node result = resultOuter.getFirstChild();
connection.close(); return result.getNodeValue(); } }

Let us have a brief look at the code that we added in ConverterHandler.java
createSOAPMessage() - Here we will create a new SOAP message from instance and set the SOAP body of MessageFactory
message according to the request and format needed by WSDL file.
SOAP request message that is returned by createSOAPMessage for operation ("dollarToRupees") and argument ("23") looks like this: S
OAP Request Message <?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org
/soap/envelope/"> <soapenv:Body> <ns1:dollarToRupees xmlns:ns1="urn:http://jaxws.samples.geronimo.apache.org"> <arg0>23<
/arg0> </ns1:dollarToRupees> </soapenv:Body> </soapenv:Envelope>
returnResult() - This function processes the SOAP response message sent by the Web service and returns the result. This function
uses method over a to send the request and receive the response.call SOAP Connection
SOAP response message that is returned by Web Service for the above SOAP Request message looks like this: SOAP Response
Message <?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/> <soapenv:Body> <dlwmin:dollarToRupeesResponse xmlns:dlwmin="http://jaxws.samples.geronimo.apache.org">
<axis2ns1:return>933.34</axis2ns1:return> </dlwmin:dollarToRupeesResponse> </soapenv:Body> </soapenv:Envelope>
Here the SOAP Response is parsed by using the functions present in SAAJ API. Also observe that is a blocking call which means call
that it will continue waiting until it receives a response.

This concludes the development section of our web based client.

Deploying and Testing the Web Client

Deploy

Right click on the Server Runtime present in the servers view and select Apache Geronimo Add and Remove Projects

Add to configured projects list and then click jaxws-saaj-converterclient Finish

Wait for some time till the server status changes to Synchronized

Testing

Right click the present under WebContent directory of our project and select index.jsp Run As->Run On Server

In the popup, check the check box and then click Always use this server when running the project Finish

Now Eclipse will try to open the jsp in a web browser which shows you a form to enter amount in Dollars.

Enter any amount and press , the jsp should display the result that is returned by the web service. submit

This completes our development and deployment of a basic SAAJ client that works at XML level by sending SOAP request messages to the deployed
Web Service.

	SAAJ Messaging Web Services

