
1.

Developing a Simple JavaServer Faces application
{scrollbar}

This application will make you understand how Model (M), View (V), Controller (C) architecture is implemented in JavaServer Faces. This application will
make use of UI components, Validator, Navigation and Bean component available with JSF.

This application will take a user First Name and Last Name. Later these fields will be validated by JSF and using the controller bean and Navigation rule
the output will be displayed. This application will also introduce a UI component which is a submit button.

To run this tutorial, as a minimum you will be required to have installed the following prerequisite software:

Sun JDK 6.0+ (J2SE 1.6)
Eclipse IDE for Java EE Developers, which is platform specific
Apache Geronimo Eclipse Plugin 2.1.x
Apache Geronimo Server 2.1.x
Geronimo version 2.1.x, Java 1.5 runtime, and Eclipse Ganymede are used is used in this tutorial but other versions can be used instead (e.g.,
Geronimo version 2.2, Java 1.6, Eclipse Europa)

Details on installing eclipse are provided in the section. This tutorial is organized in the following sections:Development environment

2

Once you have all the prerequisites installed, follow the following steps to create a project with Eclipse.

Setting Eclipse for application development

Launch Eclipse and create a dynamic Web project as shown in the figure.

https://cwiki.apache.org/confluence/display/GMOxDOC22/Development+environment

2.

3.
4.
5.

Give the fields for the Web Project as shown in the following figure.

Select .Finish
Right click on the project and select , then select .SimpleJSF Properties Project Facets
Check the box for and under the tab select as the version. Select the JavaServerFaces Version 1.2 Further configuration required...
indicator to display the pane.JSF Capabilities

5.

6.

7.

On the window check the box and select as shown in the figure.JSF Capabilities new

The next window is used to create a JSF Implementation library. Give the library name as and add the following jars. Select JSFCustomLibrary F
 once done. See the figure below:inish

<GERONIMO_HOME>\repository\commons-beanutils\commons-beanutils\1.7.0\commons-beanutils-1.7.0.jar
<GERONIMO_HOME>\repository\commons-collections\commons-collections\3.2\commons-collections-3.2.jar
<GERONIMO_HOME>\repository\commons-digester\commons-digester\1.8\commons-digester-1.8.jar
<GERONIMO_HOME>\repository\commons-logging\commons-logging\1.0.4\commons-logging-1.0.4.jar
<GERONIMO_HOME>\repository\org\apache\myfaces\core\myfaces-api\1.2.3\myfaces-api-1.2.3.jar

7.

<GERONIMO_HOME>\repository\org\apache\myfaces\core\myfaces-impl\1.2.3\myfaces-impl-1.2.3.jar

8.

1.

2.

Check Deploy and modify the URL pattern to as shown in the figure. Select .*.jsf Finish

This finishes the setting up of the Eclipse IDE for application development.

Define and Implement the application Model (M)

The as suggested by MVC architecture handles data and logic of the application. In an enterprise application. Java Beans are used to represent Model
collection of data and operation on that data. In JSF we use Java Beans to define the Model.

Under the project explorer right click on the project and create a new class.SimpleJSF

Fill the form with as the package name and as the bean class name. Select once done.New Java Class jsf FirstName Finish

2.

3.

4.

1.

Add the following code to the bean class: FirstName
JAVAsolidFirstName.java package jsf; public class FirstName { String username; public String getName() { return username; } public void
setName(String name) { username = name; } }
Create a second Bean class and add the following code to the class: LastName JAVAsolidLastName.java package jsf; public class LastName {

This completes the String lastname; public String getLName() { return lastname; } public void setLName(String lname) { lastname = lname; } }
Model definition and implementation of the bean classes.

Define and implement Model (M) objects to Controller

In a JSF application the is implemented by a configuration file called . Double click on Controller WebContent/WEB-INF/faces-config.xml
the file. This will open the .Faces Configuration Editor

1.

2.

3.

Select the tab in the editor. Select the Managed Bean Element and select .ManagedBean request Add

Choose the option, select . Give the search element as and select .Using an existing Java class Browse FirstName OK

3.

4. Select on the next window. Similarly add the other bean . Now select the tab in the Faces configuration Editor. It Finish LastName Source
displays the bean components (i.e., the Model) in the controller.

This completes the description of Model to Controller.

Define and implement View (V) in application

1. Right click on and create a new folder with the name .WebContent pages

2.

3.

4.

5.

6.

7.

Right click on folder and create a JSP called . Select .pages login.jsp Finish

Similarly create another JSP page called .welcome.jsp

Now we have to include the Tag Library Descriptors (TLD) in our application. Geronimo comes packaged with the required TLD's, which can be
found in:
solidLocation of TLD <GERONIMO_HOME>\repository\org\apache\myfaces\core\myfaces-impl\1.2.3\myfaces-impl-1.2.3.jar\META-INF\myfaces-
html.tld and <GERONIMO_HOME>\repository\org\apache\myfaces\core\myfaces-impl\1.2.3\myfaces-impl-1.2.3.jar\META-INF\myfaces_core.tld
To add these two TLD's in the application, in Eclipse under the Project Explorer right click on . Create a folder called . Copy WEB-INF tld myfaces

 and to this folder.-html.tld myfaces_core.tld

The next step is to populate and with data login.jsp welcome.jsp ActionScriptsolidlogin.jsp <%@ taglib uri="/WEB-INF/tld/myfaces-html.tld"
prefix="h" %> <%@ taglib uri="/WEB-INF/tld/myfaces_core.tld" prefix="f" %> <html> <head> <meta http-equiv="Content-Type" content="text
/html; charset=ISO-8859-1"> <title>Welcome to Apache Geronimo</title> </head> <body> <f:view> <h1><h:outputText value="Welcome to
Apache Geronimo" /></h1> <h:form> <h:message for="firstName" style="color: red;" /> <h:message for="lastName" style="color: red;" />
 <h:
outputText value="Enter your first name" />
 <h:inputText id="firstName" value="#{firstName.name}" required="true"> <f:validateLength
minimum="4" maximum="10" /> </h:inputText>
 <h:outputText value="Enter your last name" />
 <h:inputText id="lastName" value="#
{lastName.LName}" required="true"> <f:validateLength minimum="3" maximum="10" /> </h:inputText>
 <h:commandButton id="submit"
action="validated" value="Enter" /> </h:form> </f:view> </body> </html> ActionScriptsolidwelcome.jsp <%@ taglib uri="/WEB-INF/tld/myfaces-
html.tld" prefix="h"%> <%@ taglib uri="/WEB-INF/tld/myfaces_core.tld" prefix="f"%> <%@ page language="java" contentType="text/html;
charset=ISO-8859-1" pageEncoding="ISO-8859-1"%> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org
/TR/html4/loose.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Welcome</title> <
/head> <body> <f:view> <h3><h:outputText value="You have successfully logged in: " /> <h:outputText value="#{firstName.name} " /> <h:

Lets now try to understand what each line outputText value="#{lastName.LName}" /> <h:outputText value="!" /></h3> </f:view> </body> </html>
of code represents.

The first two lines in defines two tag libraries login.jsp ActionScriptsolidCode Snippet from login.jsp <%@ taglib uri="/WEB-INF/tld
These two sets of tags are defined /myfaces-html.tld" prefix="h" %> and <%@ taglib uri="/WEB-INF/tld/myfaces_core.tld" prefix="f" %>

by JSF. The first one with the namespace "h" is used to generate html views. The second one with the namespace "f" handles the core
functionalities of JSF like type conversions, validations and listeners for input from user.
The next few lines contains the usual html tags ActionScriptsolidCode Snippet from login.jsp <html> <head> <meta http-equiv="Content-
Type" content="text/html; charset=ISO-8859-1"> <title>Welcome to Apache Geronimo</title> </head> <body>
The tag represents the start of JSF code.<f:view>
This line of code Represents the input tag. The and comes from the Managed Bean. id="firstName" value="firstName.name" ActionSc
riptsolidCode Snippet from login.jsp <h:inputText id="firstName" value="#{firstName.name}" required="true">

Using the Faces Configuration Editor, select bean under tab. The Managed Bean Name is . See the figure firstName Managed Bean firstName
below.

7.

1.

This completes the implementation of View (V) in the application. The other tags and will be explained <f:validateLength> <h:commandButton>
in the next section.

Define the Validator Component

The code defines the input text length to be minimum of 4 characters and maximum of 10 <f:validateLength minimum="4" maximum="10"/>
characters. This is the standard validation provided by core tag libraries. Other examples of validators are tag, Validate Long Range Validate Double

 tag , and so on. JSF also provides a Validator interface which can be implemented to create custom validators.Range

The code defines the error message. When the user inputs the controller validates each of the inputs. If the <h:message for="" style="color: red;"/>
inputs are invalid Controller displays the same page again with an error message for the errors. The suggests that the error message will be color:red
displayed in red color.

Define and implement the View navigation by Controller (C)

This step uses the JSP page navigation in the order of user inputs and validation by controller. If all the inputs are valid than the controller performs the
action as suggested by the HTML form. This action is submitted by the HTML form as a command button.
The code in the checks to determine if all the inputs are valid. This input.jsp <h:commandButton id="submit" action="validated" value="Enter" />
is the button which submits the form to controller if all inputs are valid. In this case the tells the controller to execute the validated action commandButton
if all the inputs are valid.
The pages navigation in a JSF applicaiton is defined by . Follow the steps before to define the pages navigation.faces-config.xml

Launch the Faces Configuration Editor by double clicking on faces-config.xml

2.

3.

4.

Select the tab in the Configuration Editor. Under the Palette window select . This will select a GUI object.Navigation Rule Page PageFlow Page

Drag the mouse over the Navigation Rule Window and click on the window. This will give a window. Select the as Select JSP File login.jsp
shown in the figure and select .OK

Similarly add the page on the Navigation Rule window. See the figure below:welcome.jsp

4.

5.

6.

Select from the Palette window and join the two pages as shown in the figure:Link

Select the link between the two pages and go to properties view and set the value for field as . This is because of the From Outcome validated
tag . Once all the inputs are valid the action taken is . See the <h:commandButton id="submit" action="validated" value="Enter" /> validated
figure.

6.

7.

8.

Once done have a look the tab in the Faces Navigation Editor. A tag has been introduced into the Source <navigation-rule> faces-config.
. This rule instructs the Controller that if all the inputs are valid from a form in the , and the action is , then go xml /pages/login.jsp validated

to page ./pages/welcome.jsp

Now lets add a under as follows: index.jsp WebContent ActionScriptsolidindex.jsp <%@ page language="java" contentType="text/html;
charset=ISO-8859-1"pageEncoding="ISO-8859-1"%> <\!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org

8.

What is the in the tag. If /TR/html4/loose.dtd"> <html> <body> <jsp:forward page="/pages/login.jsf" /> </body> </html> login.jsf forward path
you look at the , is used as the URL pattern to suggest that forwarded page be taken care by Java Server Faces Servlet.web.xml *.jsf
This completes the Application Development process. The next step is to deploy and test the application.

Deploy and Test the application

Right click on the project and select . This will deploy the sample on the Apache Geronimo Server and a Login SimpleJSF Run As -> Run On Server
page will be launched.

Lets give some sample inputs:
:Sample Input #1

 MickeyFirst Name:
 MouseLast Name:

Both the First Name as well as Last Name fulfills the validation rules, so this form will be submitted to controller and according to the navigation rule
controller will launch a page. welcome.jsp

Sample Input #2:
 MicFirst Name:
 MouseLast Name:

First Name should be minimum of length=4 but in this case First Name is of length=3. In this case validation will fail and an error message will be
generated by controller for First Name field.

Sample Input #3:
 MickeyFirst Name:
 MoLast Name:

Last Name should be minimum of length=3 but in this case Last Name is of length=2. In this case validation will fail and an error message will be
generated by controller for Last Name field.

	Developing a Simple JavaServer Faces application

